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Abstract: We study the dynamics of parametric oscillations of polaritons in a microcavity 

that consists of a periodic conversion of a pair of pump polaritons into polaritons of signal and idle 
modes and vice versa. The period and amplitude of oscillations considerably depend on the initial 
polariton density, the initial phase difference, and the resonance detuning. We show that there is a 
possibility of phase controlling the polariton dynamics in the microcavity. 
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I. Introduction 
 
Mixed exciton–photon states in planar semiconductor microcavities with quantum wells in the 

active layer belong to a new class of quasi two dimensional states with unique properties [1–10]. 
They arise due to a strong coupling of excitons with eigenmodes of electromagnetic radiation of a 
microcavity, as a result of which upper and lower exciton–polariton microcavity modes are formed. 
Large interest is drawn to polariton–polariton scattering, due to which the exciton–polariton system 
demonstrates strongly nonlinear properties. These nonlinearities were revealed in luminescence 
spectra of microcavities upon resonant excitation of the lower polariton branch, and they are 
explained by parametric scattering of photoexcited pump polaritons into signal and idle modes. 
Using the pump–probe method, the authors of [8, 9] were first to observe parametric amplification 
in a microcavity, while the authors of [9] were first to observe the parametric oscillator regime upon 
pumping of the lower polariton branch. 
 

II. Statement of the problem and basic equations 
 
The objective of this work is to study exciton–polariton dynamics in the parametric 

oscillator regime. It was shown in [4, 5] that, upon excitation of exciton–polaritons on the lower 
branch of the dispersion law, a parametric scattering of two pump polaritons (p) into polaritons of 
signal (s) and idle (i) modes,which are described by the interaction Hamiltonian of the form 

( )++++ += ppisispp aaaaaaaaH €€€€€€€€int µh ,    (1) 
where µ is the constant of the parametric polariton–polariton conversion and pa€ , sa€  and ia€  are the 
annihilation operators of polaritons of the corresponding modes (p, s, i). Using (1), we can obtain a 
system of Heisenberg equations for these operators. Averaging this system and applying the 
mean_field approximation [11] yield a system of nonlinear evolution equations for the complex 
amplitudes of polaritons ispisp aa ,,,, €= . Then, we will introduce the polariton densities 

ispispisp aan ,,
*

,,,, =  and two polarization components ( )****
ppisispp aaaaaaaaiQ −=  and 

****
ppisispp aaaaaaaaR += . As a result, we arrive at the following system of nonlinear differential 

equations: 
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Qnp µ2=& , Qnn is µ−== && ,  

                             ( )ipspisp nnnnnnnRQ 2242 −−+∆= µ& , QR ∆−=& ,                  (2) 
where isp ωωω −−=∆ 2  is the resonance detuning and isp ,,ω  are the eigenfrequencies of polaritons 
of the pump (p), signal (s), and idle (i) modes. The initial conditions for the new functions can be 
represented as 

0

2

00| pptp nan === , 0
2

00| ssts nan === , 0
2

00| iiti nan === ,  

              000000| sin2 θispt nnnQQ =≡= , 000000| cos2 θispt nnnRR =≡= ,  (3) 
where 0000 2 pis ϕϕϕθ −+=  is the initial phase difference and 0pϕ , 0sϕ , 0iϕ  are the initial phases of 
the corresponding complex polariton amplitudes. 

From (2), the following integrals of motion can be easily obtained: 
00 22 spsp nnnn +=+ , 00 22 ipip nnnn +=+ , 

                          sip nnnRQ 222 4=+ , ( )pp nnRR −
∆

+= 00 2µ
.   (4) 

It can be easily seen from these expressions that evolution of the system can occur only if at least 
two of the initial densities of particles are nonzero. 

It is convenient to perform further consideration for normalized quantities 

0/ pp nny = , 000 / pss nnn = , 000 / pii nnn = , 
02 pnµ

α
∆

= , 0
1

0 pnµτ =− , 0ττ=t . (5) 

Then, system of equations (4) can be reduced to a single nonlinear differential equation for the 
normalized density y of pump polaritons, 

q
d
dy 2±=
τ

, ( )( ) ( )( )200000
22 1cos22121 ynnynynyq isis −+−−+−+= αθ .(6) 

The quantity 2qW −=  is the potential energy of an equivalent nonlinear oscillator at a zero 
total energy. Qualitatively, the behavior of the function ( )τy  can be determined by studying the 
dependence of the potential energy W  on y  at different values of the parameters 0sn , 0in , α , and 

0θ . The evolution of the oscillator can be nontrivial in the range of values of the function ( )τy  
where ( ) 0<yW . 

At arbitrary values of the parameters, the solution of Eq. (6) is determined by the values and 
by the order of arrangement of the roots of the equation ( ) 02 =yq .This equation has four real roots, 
which we will arrange in decreasing order as follows: 41 yyyy mM >>>  where my  and My  are the 
minimal and maximal values of the function y, which it acquires in the course of its evolution. They 
correspond to the minimal and maximal density of pump polaritons in the course of the evolution. 
The evolution of the system consists of periodic oscillations of the function ( )τy  in the limits from 

my  to My . The plus and minus signs in the right hand side of (6) are determined by the direction of 
variation of the derivative ( ) 00| yy && ==ττ  (the direction of the velocity). For the plus sign, 
immediately after the initial moment of time, the function will increase with respect to its initial 
value 100| === yy τ , with all other conditions being equal. Conversely, for the minus sign, this 
function will decrease. The function ( )τy  at 0<y&  differs from the function ( )τy  at 0>y&  only by a 
constant phase that depends on the parameters 0sn , 0in , α  and 0θ . 

In the case 00 =θ , one of the roots of the equation 02 =q  coincides with the initial 
condition 10 == yy . Therefore, the solution of Eq. (6) will not contain any phase shift. Moreover, 
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if the relation 000000 24 sisisi nnnnnn +=+ α  holds, the roots My  and my  degenerate and 

oscillations are absent. Therefore, in the case in which the roots of the equation 02 =q  are ordered 
such that 401 1 yyyy m >>=> , the density of pump polaritons varies in the limits from my  to 

10 =y , i.e.,under the background with the density 1=y . If the roots are ordered such that 

401 1 yyyy M >=>>  , the density of pump polaritons oscillates from 1=y  to myy =  , i.e., over the 
background with the same density 1=y . In the former case, the solution has the form 

( ) ( )( )

( )( )τ

τ

41
2

1

41
2

1

1

111

111

yyysn
yy

y

yyysn
yy
yy

y
m

m

m

m
m

m

−−
−

−
−

−−
−
−

−
=                (7) 

where the modulus k of the elliptic function, the amplitude A, and the period T of oscillations are 
given by 

( )( )
( )( )41

412

1
1

yyy
yyyk

m

m

−−
−−

= , myA −= 1 , ( ) ( )( )41 1/2 yyykKT m −−= . (8) 

In the latter case, we have 
( ) ( )( )

( )( )τ

τ

41
2

4

41
2

4

4

111

111

yyysn
yy

y

yyysn
yy

yy

y
M

M

M

M
M

M

−−
−
−

−

−−
−

−
−

= ,    (9) 

where 
( )( )
( )( )41

412

1
1

yyy
yyyk

M

M

−−
−−

= , 1−= MyA , ( ) ( )( )41 1/2 yyykKT M −−= . (10) 

If we set 1=my  in (7) or 1=My  in (9), we will obtain the solution ( ) consty == 1τ . 
The time evolution of the density of pump polaritons and the dependences of the amplitude 

A and the period T of solutions on the parameter α  at 00 =θ  are given in Fig. 1. From (7) and (9) 
and from Fig. 1, it can be seen that the density of pump polaritons varies periodically and the 
oscillation amplitude and period substantially depend on the parameters of the system. The 
amplitude of oscillations initially decrease with increasing parameter ; then, turns to zero; and, after 
that, increases and rapidly attains a saturation. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. (a) Time evolution of a normalized density of pump polaritons at 1.00 =sn , 05.00 =in  and 
and different values of the parameter α ; dependences of the (b) amplitude A and (c) period T of 

oscillations on the parameter α  at 00 =θ . 
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Figure 2 presents the evolution of the density of pump polaritons at πθ =0  and different 
values of α .In this case, the solution of Eq. (6) is expressed by the formula 

    

( ) ( )( ) ( )( )
( )( ) ( )( )kfyyyysn

yy
yy

kfyyyysn
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yyyy
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Mm
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1
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2

1

1

ϕτ

ϕτ

±−−
−
−

−

±−−
−

−
−

=        (11) 

It can be seen from Fig. 2 that, at πθ =0 , as α  increases, the periodic evolution regime changes to 
the aperiodic regime and then becomes periodic again. 
 
 
 
 
 
 
 
 
 

Fig. 2. The same as in Fig. 1, but for πθ =0  
 

III. Conclusions 
 
We found that, in the regime of a parametric oscillator, the dynamics of polaritons is a 

periodic conversion of a pair of pump polaritons into polaritons of the signal and idle modes and 
vice versa. The period and amplitude of these oscillations significantly depend on the initial 
polariton density, the initial phase difference, and the resonance detuning. At a certain relation 
between the parameters, the evolution of the system can also be aperiodic, as a result of which a 
part of pump polaritons convert into polaritons of the signal and idle modes, thus completing the 
evolution. The significant dependences of the period and amplitude of oscillations on the initial 
phase difference indicate that it is possible to perform the phase control of the dynamics of the 
system. A similar effect was previously predicted for the process of atomic–molecular conversion 
under the conditions of the Bose–Einstein condensation of atoms and molecules [12, 13]. 
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