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Abstract. Inspired by the way the brain process information, the recently introduced 

paradigm of reservoir computing has been proven to be very successful in solving certain 
tasks that are inherently difficult for traditional computers. Reservoir computing based on 
delay-coupled systems has been shown to perform as well as traditional reservoir-computing 
methods allowing to replace the large networks by a small number of delayed-coupled dy-
namical elements. Its simplest manifestation, a single nonlinear node subject to delayed feed-
back, provides excellent performance in certain tasks as spoken digit recognition and time 
series predictions.  
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I. Introduction 
 

Nonlinear systems subject to delayed feedback and/or delayed coupling, have attracted a lot 
of attention, both, from the fundamental and application point of view [1]. It has been shown that 
delay has an ambivalent impact on the dynamical behaviour, either stabilizing or destabilizing them. 
Simply by tuning two parameters, the feedback coupling time and the feedback strength, a variety of 
behaviours, ranging from stable via periodic and quasi-periodic oscillations to deterministic chaos 
can be realized. Applications of delay systems are resulting more and more interesting; chaos-based 
communications, random number generation or rainbow refractometry are only few examples.  

One of the simplest possible delay systems, and the easiest to implement, consists of a single 
nonlinear node whose dynamics is influenced by its own output a time τ in the past. Well-studied 
examples include a semiconductor laser whose output light is fed back to the laser by an external 
mirror at a certain distance or an electronic circuit whose output voltage is also fed back after a 
certain time τ. In this article we show that the transient responses generated by such systems can be 
useful to process information. In particular we prove their effectiveness in spoken digit recognition 
and time series prediction tasks. 

Reservoir computing (RC) is a bio-inspired, machine-learning paradigm that exhibits state of 
the art performance for processing empirical data. Computationally hard tasks, such as speech 
recognition, object recognition or chaotic time series prediction, amongst others, can be efficiently 
performed. RC bases in the brain ability to process information, by generating patterns of transient 
neuronal activity excited by input sensory signals. In this sense, RC mimics the way our brain 
process information. Traditional RC implementations [2-4] are generally composed of three distinct 
parts: an input layer, the reservoir, and an output layer, as shown in Fig. 1 left panel. Through the 
input layer the input signals are fed into the reservoir via fixed random weight connections. The 
reservoir usually consists of a large number of randomly interconnected nonlinear nodes, 
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constituting a recurrent network (a network with internal feedback loops). The input signals 
generate transient responses of the networks that are then read out at the output layer via a linear 
weighted sum of the individual node states. Contrary to recurrent networks that are notoriously 
difficult to train, RC solves this problem by keeping the reservoir connections fixed and training 
only the output weights. As a result of this training procedure the system is capable to generalise, 
i.e. process unseen inputs or attribute them to previously learned classes.  

Some key properties are essential for RC to properly process information. Firstly it must 
nonlinearly transform the input signal into a high dimensional state space. The commonly high 
number of used nodes in the reservoir (hundreds/thousands) allows this transformation to be 
effective. Secondly, the dynamics of the reservoir has to exhibit a short-term memory such that the 
reservoir state is influenced by inputs from the recent past. Additionally, the results of RC 
computations must be reproducible and robust against noise. Different classes must generate 
different transient states but, at the same time, similar inputs should not be associated to different 
classes. Reservoirs typically depend on few parameters that must be adjusted to satisfy the above-
mentioned conditions. Experience shows that these requirements are satisfied when the reservoir 
operates (in the absence of input) in a stable regime, but not too far from a bifurcation point. 

A RC setup based on delay-coupled systems [5,6,7] is depicted in Fig. 1 right panel. Within 
one delay interval of length τ we define N equidistant points separated in time by θ=τ/N. These N 
equidistant points are called “virtual nodes”. They play a role analogous to the nodes in traditional 
reservoirs. The values of the delayed variable at each of the N points define the states of the virtual 
nodes. Under certain inputs, these states characterize, at a given time, the transient response of the 
reservoir. The separation time θ among virtual nodes plays an important role and can be used to 
optimise the reservoir performance. It has been shown that a value of θ=0.2T, with T being the 
characteristic time scale of the nonlinear node, yields best performance [5]. Via this choice, the 
states of the virtual nodes become dependent on the states of neighbouring nodes and emulate a 
network serving as reservoir. In the following we show that the single nonlinear node with delayed 
feedback performs comparably to traditional reservoirs.  

. 
II. Results 

 
To prove the abilities of the reservoir based on delay-coupled systems, we concentrate in two 

tasks that are considered benchmark tasks in traditional RC: spoken digit recognition and time series 
prediction. 

The spoken-digit recognition task was introduced by Doddington and Schalk [8]. The input 
dataset consists of a subset of the NIST TI-46 corpus1 with ten spoken digits (0...9), each one re-
                                                           
 
1 Texas Instruments-Developed 46-Word Speaker-Dependent Isolated Word Corpus (TI46), Sep-

Figure 1. Left panel: sketch of a traditional reservoir computing setup; Right panel: reservoir 
computing based on a single nonlinear element subject to delayed feedback. 
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corded ten times by five different female speakers. We solve this task by using a Mackey-Glass 
nonlinearity whose dynamics is described by:  

 
with X denoting the dynamical variable, X

.
 its derivative with respect to a dimensionless time t, and τ 

the delay in the feedback loop. The characteristic time scale of the oscillator, determining the decay of 
in the absence of the delayed feedback term, has been normalized to T=1. The parameters η and γ rep-
resent feedback strength and input scaling, respectively.  

The Mackey-Glass system is solved numerically and using electronic circuits [5]. Electronic 
circuits can be easily implemented and are excellent testbeds to prove the robustness of the results. 
The virtual node separation is set at θ=0.2 while the total number of virtual nodes is N=400 (the 
total delay time is then 80 when T is normalized to 1). As an example, we plot in figures 2 the clas-
sification performance as a function of the feedback strength ηfor the input scaling factor γ=0.5, 
which has been chosen such that input and feedback signals are of the same order of magnitude (see 
ref. [5]). The classification performance is quantified by the word error rate (WER), the percentage 
of words that were wrongly classified, and the margin (distance) between the reservoir’s best guess 
of the target and the closest competitor. The WER is depicted in Fig. 2 left panel while the margin is 
depicted in Fig. 2 right panel. By comparing the two figures, it can be seen that an increase in mar-
gin is accompanied by a decrease in the WER. It is worth highlighting that there is a broad range of 
values of ηwhere excellent performance is observed. However, the optimum value for both quanti-
fiers is around η = 0.8. At this optimum value, we obtain a WER of 0.2% in experiments and 0.14% 
in numerical simulations, which corresponds to only one misclassification in 500 words.  These 
performance levels are comparable to those obtained with traditional RC. 

As a second example we performed a one-time-step prediction task on a time series record-
from a far-infrared laser operating in a chaotic state [9]. To evaluate the performance of our RC ap-
proach we computed the normalized mean square error (NMSE) between the predicted point and the 
target. The corresponding results, obtained with the electronic circuit implementation of the 
Mackey-Glass system, are depicted in Fig. 3. It can be seen that the performance is optimum for 
values of the feedback strength η between 1 and 1.5, where a NMSE value smaller than 0.1 is ob-
tained.  

III. Conclusion 
We have shown that the transient states generated in delayed-coupled systems could be used 

                                                                                                                                                                                                 
tember 1991, NIST Speech Disc 7-1.1 (1 disc). 

Figure 2. Word error rate (left panel) and Margin (right panel) vs. the feedback strength η. 



4th International Conference “Telecommunications, Electronics and Informatics” ICTEI 2012 
 

 
Chisinau, 17—20 May 2012  

– 22 –  

 

to process information. In particular, we have demonstrated, both numerically and using electronic 
circuits, that a simple nonlinear element, in this case a Mackey-Glass system, subject to delay feed-
back is capable of performing spoken digit recognition tasks as well as time series prediction tasks 
as efficiently as the traditional reservoir computing.  

Besides the fundamental aspects, our results also offer practical advantages. The reduction of 
a large network to a single node facilitates implementations enormously, allowing at the same time, 
the utilization of inexpensive and easy to handle components. 
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