THE INFLUENCE OF THE CO₂-EXTRACTION PROCESS ON THE MICROBIAL CONTAMINATION OF VEGETABLE RAW MATERIAL

Jenac A.

Migalatiev O., Caragia V., Vîcerova L., Suvorova G.

Scientific and Practical Institute of Horticulture and Food Technologies Jenac A., e-mail: ana.jenac@mail.ru

Abstract: The supercritical CO₂ extraction method allows both to obtain a product without solvent residues as well as one microbiologically safe. It was analyzed various vegetable raw materials: walnut kernel meal, tomato wastes, grape seeds, pumpkin seeds and wheat germ. It was found that the CO₂-extraction process has a positive influence on the degree of microbial contamination of raw materials. Due to the high pressure (up to 40MPa), the number of aerobic and facultative anaerobic microorganisms as well as yeast and mold units decreases about ten times in the meal comparing to the raw material. Also, it was found that the CO₂- extraction process destroys the coliform bacteria.

Keywords: supercritical CO2 extraction, raw material, contamination, microorganisms

Introduction

Numerous investigators have studied the effect of pressurized CO_2 on cell viability for the sterilization and inactivation of micro-organisms. Mechanisms that have been proposed for the antimicrobial activity of pressurized CO_2 take advantage of its increased solubility relative to atmospheric conditions and include the following: cell rupture by the rapid depressurization of high pressure CO_2 , the extraction of cell wall lipids, the penetration of pressurized CO_2 into the cellular membrane disrupting membrane properties, and the lowering of the intracellular pH by the dissolution of CO_2 within the cell [1].

However, lowering of the pH of the media alone cannot describe the inhibition by pressurized CO_2 . Acids that do not penetrate the microbial cells as readily as CO_2 (i.e., hydrochloric acid and phosphoric acid) do not inhibit the cells as greatly [2, 3].

The extent and mechanism(s) of microbial inactivation by pressurized CO_2 are dependent on the method of contacting between CO_2 and the cell mass, the depressurization scheme, and the operating temperature, pressure, and phase. The nature of the cell (bacterial, yeast, or fungal, and gram positive or gram negative) and the system water activity also impact the extent of sterilization of microbes [1, 4].

It was studied the influence of CO₂-extraction parameters on the microbial contamination of different raw materials: walnut grist, tomato wastes, pumpkin seeds, wheat germs and grape seeds. The determination of microbial contamination was carried in accordance with GOST 10444.15-94, GOST 30518-97, GOST 10444.12-88 and GOST 10444.12-88.

The obtained results are presented in tables 1-5.

Name of index	Walnut grist after cold pressing	CO ₂ -extract from walnut grist	Walnut grist after CO2- extraction
The number of mesophilic aerobic and facultative anaerobic microorganisms CFU/1 g	2*10 ⁴	2,0 *10 ²	7.5*10 ³
Coliform bacteria in 1 g and 0.1 g product	Was found	Not found	Not found
Yeast, UFC/1g product	8.0*10 ²	2,0*101	$<1*10^{1}$
Mold, UFC/1g product	<1*101	$<1*10^{1}$	<1*101

It was established that the number of mesophilic aerobic and facultative anaerobic microorganisms decreased hundred times in CO_2 -extract and ten times in walnut grist after CO_2 -extraction process. This process has a positive influence on the destruction of coliform bacteria, which were not detected in the extraction products.

Table 2. Microbiological indices of wheat germs, CO₂-extract from wheat germs and grits obtained from these

Name of index	Wheat germs	CO ₂ -extract from wheat germs	Wheat germs grist after CO ₂ - extraction
The number of mesophilic aerobic and facultative anaerobic microorganisms CFU/1 g	1,2*10 ³	5,0 *10 ¹	1,1*10 ²
Coliform bacteria in 1 g and 0.1 g product	Not found	Not found	Not found
Yeast, UFC/1g product	$<1*10^{1}$	9,0*10 ¹	<1*101
Mold, UFC/1g product	6,0*10 ²	1,0*10 ²	3,1*10 ²

According to table 2, the number of mesophilic aerobic and facultative anaerobic microorganisms decreased hundred times in the CO_2 -extract from wheat germs and ten times in the grist after CO_2 -extraction process.

Name of index	Dried tomato wastes	Grist from dried tomato wastes obtained with CO ₂	Grist from dried tomato wastes obtained with CO ₂ and ethanol
The number of mesophilic aerobic and facultative anaerobic microorganisms CFU/1 g	1.9*10 ⁵	1.2*10 ⁴	7.0*10 ³
Coliform bacteria in 1 g and 0.1 g product	Not found	Not found	Not found
Yeast, UFC/1g product	4.0*10 ⁵	$2.2*10^4$	$2.2*10^{3}$
Mold, UFC/1g product	<1.0*101	$<1.0*10^{1}$	$< 1.0*10^{1}$

Table 3. Microbiological indices of dried tomato wastes and grits obtained from these

According to table 3, in the analysed samples it wasn't found the coliform bacteria, but the number of mesophilic aerobic and facultative anaerobic microorganisms decreased about 3 times in grist from dried tomato wastes obtained with CO_2 and ethanol and 1.5 times in grist from dried tomato wastes obtained with CO_2 toward dried tomato wastes. The number of yeast decreased 18 times in grist from dried tomato wastes obtained with CO_2 and ethanol.

Table 4. Microbiological indices of pumpkin seeds and grits obtained from these

Name of index	Pumpkin seeds	Grist of pumpkin seeds
The number of mesophilic aerobic and facultative anaerobic microorganisms CFU/1 g	2.1*10 ⁵	$1.1*10^4$
Coliform bacteria in 1 g and 0.1 g product	Not found	Not found
Yeast, UFC/1g product	$2.2*10^{1}$	$2.0*10^{1}$
Mold, UFC/1g product	< 5.0*101	$< 1.0*10^{1}$

It was established that in 1.0 g of pumpkin seeds and grist of pumpkin seeds coliform bacteria was not detected. It was determined that the CO₂ extraction process does not have any influence on the number of yeast $-2.2 \cdot 10^1$ for pumpkin seeds and $2.0 \cdot 10^1$ grist of pumpkin seeds. Regarding the degree of contamination with mold, it seems that CO₂-extraction acts on them, reducing their number. Thus, if 1.0 g of pumpkin seed meeting $<5.0 \cdot 10^1$ of the mold, then 1.0 g of pumpkin seed grist extracted with CO₂, their number decreased substantially, about 5 times, reaching a value of $<1.0 \cdot 10^1$.

Name of index	Grape seeds	Grist of grape seeds obtained with CO ₂	Grist of grape seeds obtained with CO2 and ethanol
The number of mesophilic aerobic and facultative anaerobic microorganisms CFU/1 g	3.6*10 ⁵	$1.9*10^4$	4.2*10 ³
Coliform bacteria in 1 g and 0.1 g product	Not found	Not found	Not found
Yeast, UFC/1g product	2.4*10 ⁵	$1.6^{*}10^{4}$	8.0*10 ²
Mold, UFC/1g product	$2.0*10^{2}$	$1.0*10^{2}$	$1.4*10^2$

Table 5. Microbiological	l indices of grape seeds a	and grits obtained from these

According to table 5, in the analysed samples it wasn't found the coliform bacteria, but the number of mesophilic aerobic and facultative anaerobic microorganisms decreased about 19 times in grist of grape seeds obtained with CO_2 and 86 times in grist of grape seeds obtained with CO_2 and ethanol. The number of yeast decreased 15 times in grist from grist of grape seeds obtained with CO_2 and 300 times in grist from grape seeds obtained with CO_2 and ethanol.

Conclusions

1. The destruction of microorganisms by the CO_2 -extraction process is due to several factors such as: nature of the microorganism, dissolution of CO_2 within the cell, the parameters that influences the method of contacting between CO_2 and the cell mass, the depressurization scheme, and the operating temperature, pressure, and phase.

2. It was established that the CO_2 extraction process diminishes the number of microorganism of vegetable raw material tens or hundreds of times.

3. It was demonstrated that the use of ethanol in the extraction process significantly reduces the degree of contamination with microorganisms of vegetable raw material.

References

1. SPILIMBERGO S., ELVASSORE N., BERTUCCO A. *Microbial inactivation by high-pressure*. J. Supercrit. Fluid 2002; 22:55-63.

2. LIN H-M., YANG Z., CHEN L.F. Inactivation of Leuconostoc dextranicum with carbon dioxide under pressure. Chem. Eng. J. 1993; 52:B29-B34.

3. DEBS-LOUKA E., LOUKA N., ABRAHAM G., CHABOT V., ALLAF K. *Effect of compressed carbon dioxide on microbial cell viability*. Appl. Environ. Microbiol. 1999; 65:626-631.

4. DILLOW A., DEHGHAI F., HRKACH J.S., FOSTER N.R. LANGER R. *Bacterial inactivation by using near- and supercritical carbon dioxide*. Proc. Natl. Acad. Sci. USA, 1999; 96:10, 344-10, 348.