
7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 333

I. INTRODUCTION

Before delving into the details of WEP, it must be

understood that there are two main categories of WEP

users. Many home users don’t bother setting up WEP

because they considered it a waste of time since WEP is

crack able, or because they find it too complicated. If you

are the latter, find someone who knows how to enable

WEP, and offer them dinner. Regardless of the issues

surrounding WEP, it should be understood that cracking

WEP is not as easy as everyone makes it sound. Although

cracking WEP is possible on the typical home-owned

WLAN, it would take two to four weeks to capture enough

data to successfully extract the key. In other words, by

simply enabling WEP and changing the secret key

periodically, you can be fairly certain that your WLAN will

not be hijacked by a hacker. That said, let’s take a look at

how cracking WEP appears from a hackers point of view.

As was previously mentioned, WEP incorporates two main

types of protection: a secret key and encryption. The secret

key is a simple 5- or 13-character password that is shared

between the access point and all wireless network users.

This key is all-important to WEP in that it is also used in

the encryption process to uniquely scramble each packet of

information with a unique password. This ensures that if a

hacker cracks one packets key, he won’t be able to view

every packet’s information. To do this, WEP defines a

method to create a unique secret key for each packet using

the 5- or 13-characters of the pre-shared key and three

more pseudo-randomly selected characters picked by the

wireless hardware. For example, let’s assume that our pre-

shared key was “games”. This word would then be merged

with “abc” to create a secret key of “abcgames”, which

would be used to encrypt the packet. The next packet

Would still use “games”, but concatenate it this time with

“xyz” to create a new secret key of “xyzgames”. This

process would randomly continue during the transmission

of data. This changing part of the secret key is called the

Initialization Vector because it initializes the encryption

process for each packet of data sent. It is important to

understand the basics of XOR when discussing RC4 and

WEP because it is used in the encryption process to create

the encrypted data. XOR is just a simple binary comparison

between two bytes that produces another byte as a result of

a simple process. In short, it takes each corresponding bit in

a byte and compares them by asking “Is this bit different

from that bit?” If the answer is yes, the result is 1;

otherwise it is a 0. Figure 1 illustrates.

Figure 1

XOR Byte Comparison Table.

From this illustration, you should also note one other thing.

Just as the resulting bit can be deduced by comparing the

first two columns, the same can be said about the original

bit if the XOR bit and resulting bit are compared. (for

example, 1 XOR 1 = 0 _ 0 XOR 1 = 1). This is an

important part of how and why WEP is crack able.

RC4

RC4 is the encryption algorithm used to cipher the data

sent over the airwaves. It is important that data is

Cracking Wired Equivalent Privacy (CWEP)

Abstract —The fact that most wireless networks are not secured has been reported, discussed, lectured on,

and more. About the only way you could have avoided this is if you were completely removed from every

form of paper and electronic media. However, all this media hype has not had the desired effect! Believe it or

not, an estimated 60[nd] 70% of all wireless networks in existence are still NOT using even the most basic of

protections. As a result, any hacker can drive around the block and probably find an open and hack able

wireless network. This is problem number one. Problem number two is a bit more technical, and will be the

main subject for this article. This problem concerns the weaknesses surrounding WEP. The Wireless

Equivalent Privacy protocol defines how a wireless network is secured. In short, it determines what

encryption and authentication method is used to secure wireless data. The problem with WEP is in the way

the data is encrypted. As discovered by three researchers, WEP can be cracked by anyone with a sniffer,

which is the name given to the hardware device or software that can capture data as it flies through the air.

This basically means that all those companies that think they are securely using their wireless network are

doing so under false pretenses. This article deals with this issue, and explains just what cracking WEP means.

I will show you just how hackers will attack you and take advantage of this weakness to capture your secret

key right out of the air, which they can then use to connect to your secure wireless network.

Key Words — cracking wep, wireless networks.

Yousef DARADKEH, Ahid AL MU’NGER

Jadara University

daradkeh@jadara.edu.jo, artery2@yahoo.com

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 334

scrambled; otherwise, anyone could “see” everything using

a sniffer. This includes all e-mails, Web pages, documents,

and more. RC4 is a very simple and fast method of

encryption that scrambles each and every byte of data sent

in a packet. It does this through a series of equations using

the previously discussed secret key. RC4 actually consists

of two parts: the Key Scheduling Algorithm and the Pseudo

Random Generation Algorithm. Each part is responsible for

a different part of the encryption process. However, before

discussing the algorithm in detail, we need to understand

what an array is.

Array Swapping

An array is a programming term used to hold multiple

values. For example, consider the alphabet Array (26). This

array would hold 26 values, with each value represented by

the number in the array. For example:

alphabetArray(1)=a

alphabetArray(2)=b

alphabetArray(3)=c

However, in the case of a secure application of an array, we

want to scramble the values held in each position. If this

wasn’t done, a hacker could easily predict what was in

alphabetArray(26). To do this, a swapping function can be

performed on the array. For example, consider the

following illustration:

alphabetArray(1)=A

alphabetArray(2)=B

Swap (alphabetArray(1), alphabetArray(2))

Swap(A, B) _ (B,A)

alphabetArray(1)=B

alphabetArray(2)=A

As you can see, the values held in each array position were

switched with each other. If this same process is done over

and over again using a psuedo random routine, you won’t

be able to tell what value is held in any of the array

positions.

KSA

The Key Scheduling Algorithm is the first part of the

encryption process. The following is the algorithm actually

used in RC4 by line with an explanation for each line.

Algorithm

1. Assume N = 256

2. K[] = Secrete Key array

3. Initialization:

4. For i = 0 to N – 1

5. S[i] = i

6. j = 0

7. Scrambling:

8. For i = 0 ... N – 1

9. j = j + S[i] + K[i]

10. Swap(S[i], S[j])

Explanation

1. N is an index value. It determines how strong the

scrambling process is. WEP uses a value of 256.

2. K is the letter used to symbolize the secret key array. In

the case of a five character, pre-shared key, this value

would be the three-character IV + five character pre-shared

key _ eight-character secret key. Each character is held in

the corresponding K position. This value does not get

scrambled.

3. This starts the initialization of the KSA. It basically is

used to seed the empty State (S[]) array with values

0[nd]255.

4. This is the start of the loop process that increases the

value of i each time the algorithm loops.

5. Once it is done, the S array will hold values 0[nd]255 in

corresponding array position 0[nd]255.

6. j is used to hold a value during the scrambling process,

but it must first be initialized to ensure that it always starts

at 0.

7. This starts the scrambling process that creates the psuedo

random S array from the previously seeded S array.

8. Another loop that ensures the scrambling process occurs

256 times.

9. This is the equation used to merge the properties of the

secret key with the state array (S[]) to create a pseudo

random number, which is assigned to j.

10. Finally, a swap function is performed to swap the value

held in S[i] with the value held in S[j].

As you can see, this is not a terribly complex process.

Some simple math based on the secret key, and you have a

pseudo random state array. The next part takes this array

and creates a stream of data that is used to encrypt the data

to be sent over the airwaves.

PRGA

The PRGA (Pseudo Random Generation Algorithm) is the

part of the RC4 process that outputs a streaming key based

on the KSA’s pseudo random state array. This streaming

key is then merged with the plaintext data to create a

stream of data that is encrypted.

Following is the algorithm and its explanation:

Algorithm

1. Initialization:

2. i = 0

3. j = 0

4. Generation Loop:

5. i = i + 1

6. j = j + S[i]

7. Swap(S[i], S[j])

8. Output z = S[S[i] + S[j]]

9. Output XORed with data

Explanation

1. Again, before using the PRGA, the i and j values must

be initialized.

2. i initialized to 0.

3. j initialized to 0.

4. This starts the stream-generation processes. It will

continue until there is no

more data, which in WEP’s case is the end of the packet of

data[md]or about

1,500 bytes.

5. i is added to itself to keep a running value used in the

swap process.

Note: This value will ALWAYS equal 1 the first time

through the PRGA loop (i = i + 1 _ i = 0 + 1 = 1).

6. j is used to hold the pseudo random number in the S[]

position, with the previous S[] added to it.

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 335

Note: This value will ALWAYS hold the value held in

S[1] for the first iteration of the PRGA (j = j + S[i] _ j = 0 +

S[1]).

7. Another swap function is performed that switches the

values held in the i position and j position of the state array.

8. z is calculated based on an addition of the value held in

the state array, as represented by the addition of the values

held in S[i] added to S[j]. (This will be better understood

after seeing the example later in the article.)

9. Finally, the z value is XORed with the plaintext to create

a new and encrypted value. This can be represented by the

equation encrypted data = z XOR plaintext.

Note: XOR only requires that you know ANY two of the

values to deduce the third. In other words, if the plaintext is

known and the encrypted data is captured by a sniffer, a

hacker can deduce the z value outputted by the PRGA.

CRC

There is one final part of the data-transmission process that

needs to be mentioned due to the fact that it adds additional

data to the packet. This is the CRC, or Cyclic Redundancy

Checksum value. When a packet is sent across a network,

there has to be a way for the receiving party to know that

the packet was not altered or corrupted in transmission.

This is accomplished via the CRC. Before the data is

packaged and sent, a value is calculated by the CRC

algorithm that is based on the bytes of the data. This value

is then appended to the actual data and sent to the receiving

party. Once the packet is received, the CRC value is

removed, and a NEW CRC value is calculated on the

received data. If the NEW CRC value matches the

ORIGINAL CRC value, the packet is assumed to be

complete; otherwise, the packet is considered corrupted and

is dumped. As you will see next, this does affect the whole

encryption process.

Putting It All Together

Now that we have briefly covered the basics, let’s take a

look at how it all works together. Figures 2 and 3 provide a

graphical representation of the whole encryption process,

and decryption process.

Figure 2

Graphical representation of RC4 encryption process.

As illustrated in figure 2, the IV is first created by the

access point, and is merged with the

pre-shared key to create a secret key. This key is then used

by the KSA to create a pseudo random state array, which is

then used by the PRGA to create a streaming key that is

XORed with the plaintext data and its CRC value. As a

result, the encrypted data is created and sent to the

receiving party of the WLAN, where it is then unencrypted.

Figure 3

Graphical representation of RC4 decryption process.

From figure 3 you can see that once the data is received,

the IV, which is sent as plaintext appended to the encrypted

text, is removed and merged with the pre-shared password

to create the same secret key used in the encryption

process. This key is then used by the KSA to create a

duplicate pseudo random state array value that is used by

the PRGA to create the same streaming key used to encrypt

the plaintext. This streaming key is XORed with the

encrypted text, which results in the creation of the plaintext

and CRC value. The CRC value is removed, and a new

CRC value is deduced, which is compared to the original

CRC value. The data is then either accepted or rejected.

Cracking WEP

Now that we understand the basics of how WEP works,

let’s review a few points.

• The IV is sent as plaintext with the encrypted packet.

Therefore, ANYONE can easily sniff this information out

of the airwave and thus learn the first three characters or

the secret key.

• Both the KSA and PRGA leak information during the

first few iterations of their algorithm. The i will always be

1, and j will always equal S[1] for the

first iteration of the PRGA, and the KSA is easily

duplicable for the first three iterations due to the fact that

the first three characters of the secret key is passed as

plaintext.

• XOR is a simple process that can be easily used to deduce

any unknown value if the other two values are known.

In addition to these previously explained points, there are

several more that make WEP dangerous.

• There is a 5% probability that the values held in

S[0][nd]S[3] will NOT change after the first three iterations

of the KSA. In other words, any hacker can guess what will

happen during the KSA process with a 5% likelihood of

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 336

being correct.

• The first value of the encrypted data is always the SNAP

header, which equals “AA” in hex or “170” in decimal

form. This essentially means that by sniffing the first byte

of encrypted text and XORing it with 170, any hacker

can deduce the first output byte of the PRGA.

• In the WEP encryption process, it has been determined

that a certain format of an IV indicates that it is a weak IV

and subject to cracking. The format is (B + 3, 255, x)

where B is the byte of the secret key being cracked.

However, we know the first three characters due to the IV,

so we want to crack the pre-shared password that starts

after the IV. The 255 value indicates that the KSA is at a

vulnerable point in the algorithm, and the value “x” can be

any value.

Now that these points have been provided, let’s take a look

at how a hacker would use this knowledge to crack WEP.

Walking Through the KSA

As previously mentioned, the IV is sent as plaintext. This

can be easily sniffed out of the air and used to re-create the

first three iterations of the KSA. To illustrate, we will do

just that. Follow closely and pay attention to the

math[el]this will get a bit technical!

Before getting into the details, we need to define a few

values.

• The captured weak IV is 3, 255, 7. This value was chosen

because it was

tested and is known to be a real weak IV.

• The pre-shared password is 22222. Although a hacker

would not know this before cracking WEP, we need to

define it so you can see the cracking process in action.

• N is 256.

• If a value exists that is greater than N (256), a modulus

operation must be performed on it. This basically divides

the number by 256, which results in a leftover number

called the modulus. This is the value that is passed on

through the calculation.

• The initialization process of the state array has already

occurred and seeded the state array with the 256 values.

First, we need to clarify our key array as a hacker would

see it after capturing the IV.

K[0]=3 K[1]=255 K[2]=7 K[3]=? K[4]=? K[5]=? K[6]=?

K[7]=?

Next, we need to define and track the state array values, i

value, and j value. This will be done before each loop is

processed, so you can see how the values change. We will

not show all 256 state array values because they are useless

to the cracking WEP process. Only the first four state array

values and any value that has changed will be shown.

KSA loop 1

i=0 j=0 S[0]=0 S[1]=1 S[2]=2 S[3]=3

j=j + S[i] + K[i mod l] = 0 + S[0] + K[0] = 0 + 0 + 3 = 3 à j

= 3

In this equation, you can see that the j and i value were 0,

which is used by the S[] array

(S[0] = 0) and the K[] array (K[0] = 3). This resulted in the

values of 0, 0, and 3 being added together to assign the

value of 3 to j. This value is then passed on to the swap

Function below.

i=0, j=3

Swap (S[i], S[j]) à Swap (S[0] , S[3]) à S[0] = 0 , S[3] = 3 à

S[0] = 3 , S[3] = 0

In this process, you can see that values held in S[0] and

S[3] are swapped. This is an important process to watch,

but remember there is a 5% chance that the values held in

S[0] _ S[3] will not change after the first 4 KSA/PRGA

loops.

KSA loop 2

i=1 j=3 S[0]=3 S[1]=1 S[2]=2 S[3]=0

j=j + S[i] + K[i mod l] = 3 + S[1] + K[1 mod 8] = 3 + 1 +

255 = 259 mod 256 = 3 à j = 3

i=1, j=3

Swap(S[i], S[j]) à Swap (S[1] , S[3]) à S[1]=1 , S[3]=0 à

S[1]=0 , S[3]=1

Note that in this loop the value of i increases by one and

that a modulus operation was performed to determine the

value of j. It is only coincidental that j = 3 again.

KSA loop 3

i=2 j=3 S[0]=3 S[1]=0 S[2]=2 S[3]=1

j=j + S[i] + K[i mod l] = 3 + S[2] + K[2] = 3 + 2 + 7 = 12 à

j = 12

i=2, j=12

Swap(S[i], S[j]) à Swap (S[2] , S[12]) à S[2]=2 , S[12]=12

à S[2]=12 , S[12]=2

Note that up to this point, only KNOWN values are used.

Any hacker can reproduce this process up to this point.

However, in the next step, the secret key is unknown, so a

hacker has to stop.

KSA loop 4

i=3 j=12 S[0]=3 S[1]=0 S[2]=12 S[3]=1 S[12]=2

j=j + S[i] + K[i mod l] = 12 + S[3] + K[3] = 12 + 1 + ? = ?

i=3, j=?

Swap(S[i], S[j]) à Swap (S[3] , S[?]) à S[3]=1 , S[?]=? à

S[3]=?? , S[??]=1

So, now a hacker is up against a wall. However, what if

there was a way to determine the j value at this point?

Fortunately, for a hacker, there is a way. A simple XOR

calculation and he can determine this value from the first

iteration of the PRGA process. Knowing this, let’s reflect

on the XOR process that creates the encrypted data. The

final step of the RC4 process is to XOR a PRGA byte with

a byte of the plaintext data. Since XOR works in both

directions, we also know that we can get deduce the first

byte of the PRGA if we XOR the first byte of the encrypted

data with the first byte of plaintext. Fortunately, for a

hacker this is easy thanks to the SNAP header (170 in

decimal) and the use of a sniffer to capture the encrypted

byte. In our example, we will provide the captured

encrypted byte value (165 in decimal), which changes from

packet to packet.

The following equation illustrates the XOR process:

z = 0xAA (SNAP) XOR Cipher text byte1 = 170 (Dec)

XOR 165 (Dec) = 15 è z = 15

As a result of this XOR calculation, a hacker can deduce

that the PRGA value is 15 (decimal). Now, he can reverse-

engineer the PRGA process, and use this to determine the

missing j value. First, let’s remind ourselves of the known

loop values as they would occur entering loop 4 of the

KSA. Remember, these values can be easily reproduced by

the use of the IV values.

KSA loop 4

i=3 j=12 S[0]=3 S[1]=0 S[2]=12 S[3]=1 S[12]=2

1. Initialization:

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 337

2. i=0

3. j=0

4. Generation:

5. i = i + 1 = 0 + 1 = 1

6. j = j + S[i] = 0 + S[1] = 0 + 0 = 0

7. Swap (S[i], S[j]) à Swap (S[1] , S[0]) à S[1]=0 , S[0]=3 à

S[1]=3 , S[0]=0

8. z = S[S[i] + S[j]] = S[S[1] + S[0]] = S[3 + 0] = S[3] = ?

9. ?=15 è S[3] =15 at KSA4

From the previous discussion, you know that i will always

equal 1 for the first iteration of the PRGA (line 5). This

then means that j will always equal S[0] (line 6). As we can

see from the KSA loop 4 input values, S[1] = 0. This then

results in j being assigned the value of 0 (line 6). The

values held in S[i] and S[j] are then swapped, which means

that S[1] is swapped with S[0] resulting in S[1] = 3 and

S[0] = 0 (line 7). These values are then added

together, and used to pull a value from the state array. In

this case, the combined S[i] and S[j] values = 3 (line 8).

However, the S[3] value referenced to here is from the

completion of KSA loop 4, which is unknown to us.

Fortunately, due to the XOR process, we know

that the resulting value is 15, which means that S[3] will

equal 15 at the output of KSA loop 4. Knowing this, hacker

only needs to reverse the KSA loop 4 processes to deduce

the secret key value.

Let’s now walk though this as a hacker would.

KSA loop 4

i=3 j=12 S[0]=3 S[1]=0 S[2]=12 S[3]=1 S[12]=2

S[3]=15 , S[15]=S[3]t-1 à S[3]=15 , S[15]=1

First, we know that the final step in the KSA loop is to

swap values. Knowing the values of the state array after

loop 4 completes and before it starts is important. Thanks

to the XOR weakness, we know S[3] will equal 15, and we

can make an educated guess that S[15] will hold the value

held by S[3] before loop 4, which is 1 in this case. As a

result, a hacker can deduce that S[3]=15 and S[15]=1 after

the swap. Swap (S[3] , S[15]) à S[3]=1 , S[15]=15

Next, a hacker swaps the values held in these positions,

which leaves S[3] equaling 1.

j=j + S[i] + K[i mod 256] = 12 + S[3] + K[3] = 12 + 1 +

K[3] = 15

A hacker then plugs the values into the equation that would

produce the j value. This fills in all the fields except the

value of the secret key array.

à K[3] = 15 – 12 – 1 = 2

After a simple reverse calculation, the value 2 is produced,

which is the first byte of out secret key!

Simplifying the Process

This was a down-and-dirty look at how a hacker could

deduce a secret key, byte by byte. If they had to do this by

hand, the threat of this weakness would be seriously

lessened.

However, this process has been written into a program that

can perform this process in seconds if enough data is

captured. For example, WEPCrack (which was written as

an educational tool) and Air Snort are both programs that

can crack the secret key in a matter of seconds if enough

data is present. The catch is with the data. Due to the

requirements, roughly 7GB of data must be captured, on

average, to crack the password. This is A LOT of

information. In fact, most home users and small businesses

will have a tough time meeting this mark in two weeks.

However, on the other hand, if a WLAN is fully maxed out,

it can send this much data in two to four hours. So, the

threat of WEP is a real and dangerous risk.

II. CONCLUSION

For those people who are concerned about this threat, there

are several things that can be done to secure the WEP hole.

First, use WEP. Although this may seem ridiculous, the

simple fact that you use WEP will cause most hackers to

skip your WLAN and move on to an unprotected target.

Second, use a RADIUS server for authentication. This will

ensure that each user is permitted access to the internal

network only with a user name and password. Although

this is some protection, the RADIUS server should also use

a time limit on the keys. This is due to further weaknesses

and dangers, known as ARP poisoning, in which a hacker

can take over an existing session and bypass any RADIUS

requirements. By setting the time to 30 minutes, you can be

sure that no hacker can successfully crack WEP. Fourth, set

up a VPN on top of the WLAN connection. This will

provide further protection and require yet another password

to connect. The downside of this is that it will slow the

connection speed due to VPN encryption overhead. Fifth,

control access to the internal network using the user name

and passwords. This will protect your resources if a laptop

is stolen or if the account information is pilfered. In

addition to these measures, there are additional things one

can do to increase security. Tokens, DMZs, radiation

zones, and more can be used to control who has what

access, where, and for how long. In short, just as with a

regular network, you have to weigh the need with the costs

of having users jump through more security gates to access

their data. Too much security, and no one will use the

service or will find ways around it. Too little, and you may

have the wrong people accessing your data. If nothing else,

this article should have enlightened you about how a

hacker cracks WEP. If it can be illustrated in a few pages

of text, imagine how easy it is to automate using a

computer. Although the danger is real for everyone who

uses WEP, the threat really only applies to those who have

highly trafficked WLANs. In these cases, WEP should be

only one part of the security defenses built to protect your

wireless network from intrusion.

REFERENCES

[1] David Tse, Pramod Viswanath Fundamentals of

wireless communication 2005

[2] Praphul Chandra , Bulletproof Wireless Security 2005

[3] Jim Geier , Deploying Voice over Wireless LANs

(Mar 24, 2007)

[4] Jim Geie , Wireless Networks First-Step (Aug 13,

2004)

[5] Andrea Bittau, Mark Handley, and Joshua Lackey. The

_nal nail in WEP's co_n. In IEEE Symposium on

Security and Privacy, pages 386{400. IEEE Computer

Society, 2006.

[6] www.networksecurityjournal.com, www.tenable.com

http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22David+Tse%22
http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Pramod+Viswanath%22
http://www.amazon.com/Deploying-Voice-over-Wireless-LANs/dp/1587052318/ref=as_li_wdgt_js_ex?&camp=212361&linkCode=wey&tag=wirelessnets-20&creative=380737
http://www.amazon.com/Deploying-Voice-over-Wireless-LANs/dp/1587052318/ref=as_li_wdgt_js_ex?&camp=212361&linkCode=wey&tag=wirelessnets-20&creative=380737
http://www.amazon.com/Wireless-Networks-First-Step-Jim-Geier/dp/1587201119/ref=as_li_wdgt_js_ex?&camp=212361&linkCode=wey&tag=wirelessnets-20&creative=380737
http://www.amazon.com/Wireless-Networks-First-Step-Jim-Geier/dp/1587201119/ref=as_li_wdgt_js_ex?&camp=212361&linkCode=wey&tag=wirelessnets-20&creative=380737
http://www.amazon.com/Wireless-Networks-First-Step-Jim-Geier/dp/1587201119/ref=as_li_wdgt_js_ex?&camp=212361&linkCode=wey&tag=wirelessnets-20&creative=380737
http://www.amazon.com/Wireless-Networks-First-Step-Jim-Geier/dp/1587201119/ref=as_li_wdgt_js_ex?&camp=212361&linkCode=wey&tag=wirelessnets-20&creative=380737
http://www.networksecurityjournal.com/
http://www.tenable.com/

