
7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 244

I. INTRODUCTION

Though JSON [1] data format is much more efficient than

XML, still it is inefficient exchange between a web server

and a browser. For one, it converts everything to text. A

second problem is its excessive use of quotes, which add

two bytes to every string. Thirdly, it has no standard format

for using a schema. When multiple objects are serialized in

the same message, the key names for each property must be

repeated, even though they are the same for each object.

JSON [1] used to have an advantage because it could be

directly parsed by a javascript engine, but even that

advantage is gone because of security and interoperability

concerns. About the only thing JSON [1] going for it is that

it is usually more compact than the alternative, XML, and it

is well supported by many web programming languages.

Compression of JSON data is useful when large data

structures must be transmitted from the web browser to the

server [2]. In that direction, it is not possible to use gzip

compression, because it is not possible for the browser to

know in advance whether the server supports gzip. The

browser must be conservative, because the server may have

changed abilities between requests.

II. CJSON COMPRESSION ALGORITHM

CSJON[5] compress the JSON [1] with automatic type

extraction. It tackles the most pressing problem: the need to

constantly repeat key names over and over. Using this

compression algorithm, the following JSON [1]:

[

 { // This is a point

 "x": 100,

 "y": 100

 },

 { // This is a rectangle

 "x": 100,

 "y": 100,

 "width": 200,

 "height": 150

 },

 {}, // an empty object

 ... // thousands more

]

You can notice that a lot of the space is taken up by

repeating the key names "x", "y", "width", and "height".

They only need to be stored once for each object type:

{

 "templates": [["x", "y"], ["x",

"y", "width", "height"]],

 "values": [

 { "type": 1, "values": [100,

100] }, { "type": 2, "values": [100,

100, 200, 150] }, {}]

}

Each object in the original input is transformed. Instead

of listing the keys, the "type" field refers to a list of keys in

the schema array. But we are still repeating "x", and "y".

The rectangle shared these properties with the point type,

and there is no need to repeat them in the schema. The

optimization can go even farther. Since we are trying to

save space, we rename our properties, and stick in a format

code so we can detect that compresed json is used. The

compressed json can look like this:

JSON Compression Algorithms

Abstract — JSON (Java Script Object Notation) [1] is a lightweight data-interchange format. It is easy for

humans to read and write. It is easy for machines to parse and generate. It can be used as a data interchange

format, just like XML. When comparing JSON [1] to XML, it has several advantages over the last one. JSON

[1] is really simple, it has a self-documenting format, it is much shorter because there is no data configuration

overhead. That is why JSON is considered a fat-free alternative to XML.

However, the purpose of this article is not to discuss the pros and cons of JSON [1] over XML. Though it is

one of the most used data interchanged format, there is still room for improvement. For instance, JSON [1]

uses excessively quotes and key names are very often repeated. This problem can be solved by JSON [1]

compression algorithms. There are more than one available. Here you'll find an analysis of two JSON [1]

compressors algorithms and a conclusion whether JSON [1] compression is useful and when it should be

used.

Alexandru Objelean

Moldova State University

alex.objelean@gmail.com

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 245

{

 "f": "cjson",

 "t": [[0, "x", "y"], [1, "width",

"height"]],

 "v": [{ "": [1, 100, 100] }, {

"": [2, 100, 100, 200, 150] }, {}]

}

The above example shows how a small sample of json is

transformed into a compressed version. The impact is even

bigger when you are trying to compress a large json file,

containing hundreds or even thousands of entries.

The hard part is finding the objects which share sets of

keys. It sounds a lot like the Set Cover problem, and if so,

an optimal solution is NP-complete. Instead, we will

approximate the solution using a tree structure. While we

are building the value array, when we encounter an object,

we add all of its keys to the tree in the order that we

encounter them.

At the end of the process, the nodes of the tree can be

traversed and templates created. Nodes which represent the

end of a key list (shown in gray) must have entry in the key

list. Although not illustrated here, nodes with multiple

children are also points where the the child object types

inherit from a common parent, so they also get an entry.

The astute reader will realize that the final schema

depends on the order that we inserted the keys into the tree.

For example, if, when we encountered the rectangle, we

inserted the keys "width" and "height" before "x", and "y",

the algorithm would not find any common entries.

It is possible to gain more efficient packing by using a

greedy algorithm. In the greedy algorithm, before we

begin, an initial pass through all the objects would be made

to build a list of unique object types. Then when it comes

time to insert keys into the tree, they are first sorted so that

the ones which occur in the most unique types are inserted

first. However, this method adds a lot of extra processing

and I feel the gains would not be worthwhile.

III. HPACK COMPRESSION ALGORITHM

The most common practice to serve documents, such XML,

plain text or JSON, is the gz or deflate compressed output.

Unfortunately, even if every browser has a built in zlib

module to decompress strings on requests completed,

JavaScript cannot use this feature to compress/decompress

same strings. This limit is more “mono-directional”

because thanks to JSON [1] and gzipped outputs we can

send to the client huge amount of data without

compromising both bandwidth and response time.

A big limit is to manipulate received collection, and send

back in “one shot” a consistent amount of data (the

received collection itself, why not). Thanks to JSON.hpack

[3] we can send from client to server up to 70% less

characters than a normal JSON [1] post request.

 The result is a faster interaction in both ways and, even if

JavaScript or the server will spend few milliseconds to

pack or unpack long collections, the total elapsed time

between the sent action and the response, plus the total

bandwidth used to both send and receive (think about

mobile connections as well) will be less than ever. For

these reason, the most important thing is to have many

server-side implementations as possible in order to be able

to unpack collections sent via client or to understand that

data and to manipulate it on the server without problems.

The unpack operation is indeed truly fast and simple to

implement as well. To send back data we can still use

gzipped/deflated strings, especially because these

compressor algorithms are both fast and bandwidth savers.

As summary, without gzip the generated JSON.hpack [3]

output could fall down from 70Kb to 26Kb while via gzip

the difference will not be that consistent (repeated JSON

property names are well compressed).

JSON.hpack [3] is a lossless, cross language, performances

focused, data set compressor. It is able to reduce up to 70%

number of characters used to represent a generic

homogeneous collection.

The HPack [3] compression algorithm is based on the idea

that JSON data format contains a lot of redundant property

names.

Using HPack algorithm [3], the following sample of JSON:

{

 "id" : 1,

 "sex" : "Female",

 "age" : 38,

 "classOfWorker" : "Private",

 "maritalStatus" : "Married-civilian

spouse present",

 "education" : "1st 2nd 3rd or 4th

grade",

 "race" : "White"

}

Can be transformed into:

["id","sex","age","classOfWorker","mari

talStatus","education","race"],[1,"Fema

le",38,"Private","Married-civilian

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 246

spouse present","1st 2nd 3rd or 4th

grade","White"]

The HPack [3] algorithm provides several levels of

compression (from 0 to 4). Each level introduces an

additional feature, by improving the compressing

efficiency. The level 0 compression performs the most

basic compression by removing keys (property names)

from the structure creating a header on index 0 with each

property name. Next levels make it possible to reduce even

more the size of the JSON by assuming that there are

duplicated entries.

IV. ANALYSIS

The purpose of this analysis is to compare each of the

described JSON compressor algorithms. For this purpose

we will use 5 files with JSON content having different

dimensions, varying from 50K to 1MB. Each JSON file

will be served to a browser using a servlet container

(tomcat) with the following transformations:

 Unmodified JSON - no change on the server side

Minimized JSON - remove whitespaces and new lines

(most basic js optimization)

 Compressed JSON using CJSON algorithm

 Compressed JSON using HPack algorithm

 Gzipped JSON - no change on the server side

 Gzipped and minimized JSON

 Gzipped and compressed using CJSON algorithm

 Gzipped and compressed using HPack algorithm

This table contains the results of the benchmark. Each

row of the table contains one of the earlier mentioned

transformation. The table has 5 columns, one for each

JSON file we process.

TABLE I. RESULTS

 JSON1 JSON2 JSON3 JSON4 JSON5

Original JSON

size (bytes)

52966 104370 233012 493589 1014099

Minimized 33322 80657 180319 382396 776135

Compress

CJson

24899 48605 108983 231760 471230

Compress

HPack

5727 10781 23162 49099 99575

Gzipped 2929 5374 11224 23167 43550

Gzipped and

minimized

2775 5035 10411 21319 42083

Gzipped and

compressed

with CJson

2568 4605 9397 19055 37597

Gzipped and

compressed

with HPack

1982 3493 6981 13998 27358

The following two graphics are the representations of the

data included in the above table. The first graphic groups

results for each processed JSON using all types of

transformations using Y axis for absolute size of JSON file

in bytes. The second graphic is similar, but uses the Y axis

for relative size in percentage.

Transformation Results in size (bytes)

Transformation Results in relative size (percentage)

The relative size of transformation graphic is useful to

see if the size of the json to compress affects the efficiency

of compression or minimization. You can notice the

following:

 the minimization is much more efficient for smaller

files. (~60%)

 for large and very large json files, the minimization

has constant efficiency (~75%)

 compressors algorithms has the same efficiency for

any size of json file

 CJson compressing algorithm is less efficient (~45%)

than hpack algorithm (~8%)

 CJson compressing algorithm is slower than hpack

algorithm

 Gzipped content has almost the same size as the

compressed content

 Combining compression with gzip or minimization

with gzip, doesn't improve significantly efficiency

(only about 1-2%)

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 247

V. CONCLUSION

Both JSON compression algorithms are supported by the

web resource optimizer for java (wro4j) [6] framework by

the following processors: CJsonProcessor &

JsonHPackProcessor. Both of them provide the following

methods: pack & unpack. The underlying implementation

uses Rhino engine to run the javascript code on the

serverside.

JSON Compression algorithms considerably reduce

JSON file size. There a several compression algorithms.

We have covered two of them: CJson [4] and HPack [3].

HPack seems to be much more efficient than CJson and

also significantly faster. When two entities exchange JSON

and the source compress it before it reach the target, the

client (target) have to apply the inverse operation of

compression (unpacking), otherwise the JSON cannot be

used. This introduces a small overhead which must be

taken into account when deciding if JSON compression

should be used or not.

When gzipping of content is allowed, it has a better

efficiency than any other compression algorithm. In

conclusion, it doesn't worth to compress a JSON on the

server if the client accepts the gzipped content. The

compression on the server-side does make sense when the

client doesn't know how to work with gzipped content and

it is important to keep the traffic volume as low as possible

(due to cost and time).

Another use-case for JSON compression algorithm is

sending a large JSON content from client to server (which

is sent ungzipped). In this case, it is important to unpack

the JSON content on the server before consuming it.

REFERENCES

[1] JSON RFC 4627 documentation:

http://www.ietf.org/rfc/rfc4627.txt?number=4627

[2] G. Michael Connolly; Mehmet Akin; Ankur Goyal;

Robin Howlett; Matthew Perrins, Building Dynamic

Ajax Applications Using WebSphere Feature Pack for

Web 2.0 Pp. 579

[3] HPack algorithm implementation:

https://github.com/WebReflection/json.hpack

[4] CJson algorithm implementation:

http://stevehanov.ca/blog/cjson.js

[5] CJson algorithm description:

http://stevehanov.ca/blog/index.php?id=104

[6] Web Resource Optimization for java framework:

http://code.google.com/p/wro4j/

http://www.ietf.org/rfc/rfc4627.txt?number=4627
https://github.com/WebReflection/json.hpack
http://stevehanov.ca/blog/cjson.js
http://stevehanov.ca/blog/index.php?id=104
http://code.google.com/p/wro4j/

