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I. INTRODUCTION 

The search and investigation of materials with a higher 

thermoelectric figure of merit was and remains to be an 

important and urgent problem of solid state physics. Such 

materials are needed for the utilization in thermoelectric 

direct converters of electrical energy into cold and of heat 

into electrical energy.  In the last years, the demand for 

thermoelectric converters, as solid state coolers, especially 

for microelectronics and computers, or as power generation 

systems, in particular for recuperation of waste heat, has 

increased considerably. The thermoelectric materials are 

used also as sensitive elements in the detectors of infra red 

radiation.  

It is well known that the thermoelectric converters have 

evident advantages with respect to traditional ones: no 

moving parts, high reliability, compactness, noiseless 

operation, no environment pollution. Also, they can be 

made very small and, relatively, no expensive. However, 

large application of thermoelectric converters is limited by 

their low efficiency. The latter is determined by low 

thermoelectric figure of merit ZT of used materials. In 

order to increase ZT, it needs to increase in the same 

material the electrical conductivity , the thermopower 

(Seebeck coefficient) S, and to diminish the thermal 

conductivity k at operating temperature T. However, this 

strategy applied to known bulk materials has not yet 

produced materials with ZT > 1 at room temperature, 

because , S and k are not independent each of other.  

Now the best bulk thermoelectric materials have values 

of dimensionless figure of merit, ZT near 1. It is rather low 

value. But it is expected that new more efficient materials 

will be found and the market of thermoelectric devices will 

grow quickly in the nearest future. For example, a ZT value 

of 3 or higher would make solid-state home refrigerators 

economically competitive with the compressor-based one 

[1]. 

    An increase of the thermoelectric figure of merit has 

been obtained in different low dimensional structures such, 

as the IV-VI based multiple quantum-well [2, 3] and 

quantum-dot [4] superlattices.  A value of ZT ~ 2.4 has 

been measured [5] at room temperature in p-type 

Bi2Te3/Sb2Te3 superlattice structures. Even higher values of 

ZT were measured in B4C/B9C and Si/SiGe multilayer 

quantum-well films [6]. At Hi-Z Technology, Inc. it has 

been recently demonstrated a conversion efficiency of 14% 

of a quantum-well couple fabricated on the base of above 

mentioned films [6].  

We have investigated theoretically the opportunities to 

increase the figure of merit of material in PbTe/PbEuTe 

quantum-well structures [7, 8] and have elaborated some 

recommendations for these purposes. The integrated 

superlattice micro coolers, grown directly on the 

microelectronic chip surface have been also fabricated [9]. 

Impressive high ZT ~ 3 has been obtained by Harman in 

PbTeSe quantum dot superlattices [10], and even ZT ~ 3.5 

[11, 12]. 

However, the technology to obtain such structures is 

complicated and very expensive. In the last years the 

organic materials attract more and more attention as 

materials which are less expensive and have more diverse 

and often unusual properties in comparison with the 

inorganic materials. It exists already a new generation of 

organic based electronic devices. It was also predicted that 

some quasi-one-dimensional organic materials may have 

improved thermoelectric properties too, and values of ZT ~ 

20 at room temperature [13-16]. New possibilities to 

increase ZT open recent prediction of the violation of 

Wiedemann-Franz law [17] and the diminution of the 

Lorentz number in the crystals of tetrathiotetracene–iodide, 

TTT2I3, which are of hole type conduction.  

The aim of this paper is to study in more detail the 

physical reasons of Lorentz number reduction in low-

dimensional nanostructured organic crystals with electronic 

type conduction and to evaluate the effect of this reduction 

on the increase of ZT.   

II. CRYSTAL MODEL 

Quasi-one-dimensional are named such organic crystals 

which are formed from linear chains or stacks of molecules 

that are packed into a three-dimensional crystal. Many 

organic crystals have Q1D structure [18]. We will consider 

the Q1D crystals with electronic conduction and with the 
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parameters of TCNQ chains in TTF-TCNQ 

(tetrathiofulvalene-tetracyanoquinodimethane) crystals. 

In Q1D crystals the interaction between the molecules 

along the chains is much greater than between those of 

different chains. Accordingly, the crystals have needle-like 

form. In the chains direction the conduction mechanism is 

band-like, and in transversal to chains direction it is 

hopping-like. The ratio of longitudinal conductivity to the 

transversal one is of the order of 10
3
. Therefore, in the first 

approximation the transversal conductivity can be 

neglected and we obtain the one-dimensional (1D) crystal 

model. The model has been described in [19].  

Two more important electron-phonon interactions are 

taken into account simultaneously. The first interaction is 

deformation potential similar and is determined by the 

variation of the energy w of electron transfer between 

nearest molecules long chains, caused by the thermal 

vibrations of crystalline lattice (longitudinal acoustic 

phonons). The coupling constant is proportional to the 

derivative wof w with respect to the intermolecular 

distance. The second interaction is similar to that of 

polaron. The coupling constant of this interaction is 

proportional to the mean polarizability of molecule α0. 

We consider the charge and energy transport along the 

chains under a weak electric field and a temperature 

gradient applied in the direction of chains. The linearized 

kinetic equation is solved as in [19] and for the electrical 

conductivity σ, the Seebeck coefficient S, the electronic 

thermal conductivity κ
e
, the power factor P, the 

thermoelectric figure of merit ZT and the Lorenz number L 

we obtain  
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where Rn are the transport integrals   
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Here E is the carrier energy, E0 ,  = 4w, )(0 Ef   is 

the derivative of Fermi distribution function with respect to 

E, Lk is the lattice thermal conductivity, z is the number of 

chains through the transversal section of the unit cell, e is 

the electron charge, k0 in the Boltzmann constant, EF is the 

Fermi energy, a, b and c are lattice constants, )(E   is the 

relaxation time  
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where vs is the sound velocity, γ is the ratio of amplitudes 

of above mentioned electron-phonon 

interactions )/(2 5
0

2 wae   ,   /)1(20  wE  is the 

resonance energy which corresponds to the maximum of 

)(E , when  00 E . The dimensionless parameter D 

in Eq. (3) describes the scattering of carriers on impurities  

                    )4/( 2
0

3222 wTkaMvdInD sim                  (4) 

Thus, the crystal model is characterized by two main 

parameters that can be varied: the parameters  and D. The 

latter determines the crystal purity.  

III. MODELING OF KINETIC COEFFICIENTS  

The kinetic coefficients were modeled as functions of 

dimensionless energy   = E/2w, or Fermi energy F  = 

EF/2w, measured in unities of 2w, for different values of 

crystal parameters. The parameters of TCNQ chains 

(electronic conduction) in the TTF-TCNQ crystal are:  the 

mass of molecule M = 3.710 me (me is the mass of 

electron), w = 0.125 eV, w  = 0.2 eV Å
-1

, vs = 210
5
 cm/s, 

a = 12.3Å, b = 3.82Å, c = 18.47Å, z = 2. We will choose  

= 2 and D = 0.05, 0.01, 0.005.  

In the Fig. 1 the dependence of Lorenz number L on 

Fermi energy F  is presented for a material with γ = 0 and 

w, w increased by ten times (large conduction band). It is 

seen that for nondegenerate carriers L is very close 

to )/(2 22
0 ek , and for degenerate one L is close to 

)/)(3/( 22
0

2 ek  as for scattering on acoustic phonons. It is 

seen that the Wiedemann-Franz law occurs in this case 

(horizontal parts of solid line) and L does not depend on D.   

In the Fig.2 the dependence of relaxation time on carrier 

energy is presented. The lowest dash-dotted line 

Fig.1. Lorenz number L as a function of Fermi 

energy F for  = 0 and a large conduction band. 

Fig.2. Relaxation time as a function of energy 

in the conduction band. 
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corresponds to the case, when only the first electron-

phonon interaction mechanism is included (γ = 0). It is seen 

that in this case the relaxation time is a very smooth 

function of energy with a very small maximum which is 

even not observed in this scale. The anomalies of kinetic 

coefficients are connected with the behavior of relaxation 

time, when both electron-phonon interactions are included 

(dash, dotted and continue lines in Fig.2). In this case the 

interference of above mentioned electron-phonon 

interactions leads to their mutual compensation for a 

narrow strip of states in the conduction band. The 

maximums of relaxation time are limited by impurity 

scattering. 

In the Fig. 3 the dependencies of thermopower (Seebeck 

coefficient) S on F  are presented. It is seen that the 

domain of electronic conduction (S < 0) which in the case 

when    γ = 0 is up to F = 1, is enlarged up to F = 1.5. It 

is due to the contribution of carriers thermally excited from 

the states near the Fermi level to states near the maximum 

of relaxation time. For F > 1.5 the carriers become holes 

and S > 0. The values of S can be rather high.    

 

 

Illustrations and tables should be progressively 

numbered, following the order cited in the text; they may 

be organized in one or two columns. Tables must be 

accompanied by a caption placed at the top. Figures 

(abbreviated Fig.) must be accompanied by a caption 

placed underneath. References made to tables in text will 

not be abbreviated e.g. “in Table I, TN Roman means 

Times New Roman”. 

Each formula should occupy one line. Consecutive 

numbers should be marked in brackets. 

 

 

 

 

 

 

Let now analyze the behavior of the Lorentz number. 

From Fig.4 it is seen that the dependences of L on F  are 

total different in comparison with those from Fig.1. At 

F less than approximately 1.5 and up to F ~ -0.1, L is 

increased and achieves very high maximum at F ~ 0.7. 

The maximum is higher in purest crystals. From other 

hand, for F  > 1.1 the Lorentz number is diminished and 

achieves at F  = 1.5 values of 0.37, 0.51 and 0.98(k0/e)
2
  

for D = 0.005, 0.01 and 0.05, respectively. In the purest 

crystal L is diminished by 9 times as compared with the 

respective values in ordinary materials (see Fig.1). It is 

important for thermoelectric applications. Such behavior of 

L is caused by the behavior of relaxation time.  

In general form, the Lorentz number is defined as 

TL e  / . The minimums of L are determined by the 

carriers with energies around the maximums of relaxation 

time. These carriers give significant contribution to  

which obtains high maximums at F  ~ 1.5. The electronic 

thermal conductivity ke is increased too, but not so strongly 

as , due to narrower interval of energy of carriers that give 

main contribution to the energy transport. The maximums 

of e  are relatively lower and larger than those of  and 

besides, are displaced to lower values of Fermi energy 

F ~ 1.28 – 1.33 in dependence of crystal purity. In the 

purest crystal the maximum of L is almost 2.5 higher than 

in ordinary materials.   

In the Fig.7 the dependences of thermoelectric figure of 

merit ZT on F  are presented. It is seen that ZT has also 

maximums. In the purest crystals ZT achieves value as high 

as 2.7. Even in less pure crystals (dotted line in Fig.5) the 

maximum of ZT is still 1.8, very good result. Unlike the 

case of crystals with hole conduction, considered earlier 

[17, 20], the maximums are displaced at higher carrier’s 

concentrations. This means that in order to increase ZT it is 

necessary to increase the electron’s concentration n. If in 

ordinary stoichiometric crystals n = 1.410
21

 cm
-3

, to the 

maximum of ZT in the purest crystals it corresponds n = 

2.710
21

 cm
-3

, i.e. the carrier’s concentration must be 

increased by 1.9 times.  

For crystals with such carriers concentration the values 

of electrical conductivity  are expected to be 2.610
4
, 

2.010
4
and 9.610

3
 

-1
cm

-1
, respectively for three degrees 

of purity, when D = 0.005, 0.01 and 0.05. The 

Fig.3. Thermopower S as a function of 

dimensionless Fermi energy F for  = 2. 

Fig.4. Lorentz number L as a function of 

dimensionless Fermi energy F for  = 2. 

 

Fig.5. ZT as a function of dimensionless 

Fermi energy F for  = 2. 
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thermopower S must be (-167, 151, and -104) V/K, 

respectively. The electronic thermal conductivity must be 

(7.4, 6.5 and 4.1) W/mK. The values of Lorentz number 

are expected to be (1,21, 1.45, and 1.92) (k0/e)
2
, i.e. 

approximately 2.7, 2.3 and 1.7, times smaller than for 

ordinary materials. These results are very promising for 

thermoelectric applications.   

In the same times, a value of ZT = 2 can be achieved in 

the purest crystal at lower concentration n = 2.510
21

 cm
-3

, 

or F = 1.08. At this concentration in less pure crystals ZT 

achieves still 1.4 (dotted line) and 0.6 (dashed line).  

For crystals with such carriers concentration the values 

of electrical conductivity  are expected to be (9800, 7900 

and 9600) 
-1

cm
-1

, respectively for same three degrees of 

purity. The thermopower S must be (-226, -200, and -136) 

V/K, respectively. The electronic thermal conductivity 

must be (6.5, 5.6 and 3.4) W/mK. The values of Lorentz 

number are expected to be (2.94, 2.65, and 2.82) (k0/e)
2
, i.e. 

approximately 1.1 - 1.2, times smaller than for ordinary 

materials.  

In order to evaluate the importance of the Lorentz 

number reduction let’s introduce dimensionless power 

factor S0 = S/(k0/e), dimensionless Lorentz number L0 =     

L/(k0/e)
2
, and rewrite the expression for ZT in the following 

form 
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where kL is the lattice thermal conductivity. In the best bulk 

 thermoelectric material Bi2Te3 the contribution to ZT from 

two terms in the denominator is D0 = 3.4 + 3.3 = 6.7. It is 

seen that the contribution from L0 is important, 

approximately 50%. In considered here crystals kL = 

1.0W/m.K and for  = 1000 Ω
-1

cm
-1

 in the absence of 

interference ( = 0) D0 = 2.7+3.3 = 6. The contribution 

from L0 even dominates, but D0 is a little decreased. In the 

presence of interference, when both electron-phonon 

interactions are considered, for  = 2.610
4
 Ω

-1
cm

-1
 we 

have D0 = 0.17+1.21 =1.38. The contribution to D0 from 

the Lorentz number dominates too, but it is diminished by 

2.7 times, and the denominator in (5) it self is diminished 

by 2.4 times. From this comparison it is seen the 

importance of Lorentz number diminution for the increase 

of the thermoelectric power factor.  

IV. CONCLUSIONS 

    We consider the charge and energy transport in quasi-

one-dimensional nanostructured organic crystals under a 

weak electric field and a temperature gradient applied in 

the direction of chains. Two more important electron-

phonon interactions are taken into account simultaneously. 

The first interaction is deformation potential similar and the 

second is of the polaron type. The carrier’s scattering on 

impurity is also considered. It is shown that unlike the case 

of ordinary materials, the Lorentz number has a maximum 

in the domain of intermediary electronic concentrations. 

The maximum is higher in the purest crystals. At higher 

concentrations the Lorentz number has a minimum which 

is deeper also in the purest crystals with a value diminished 

by an order of magnitude and even more in comparison 

with the case of ordinary materials. It leads to increase of 

the thermoelectric efficiency and is favorable for 

thermoelectric applications of such materials.   
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