MAGNETO- SEEBECK COEFFICIENT Bi_{1-x}Sb_x MICROWIRES FOR THERMOELECTRIC APPLICATIONS

Albina NIKOLAEVA^{1*}, Leonid KONOPKO¹, Tito HUBER², Ivan POPOV¹, Anna KOBYLIANSKAY¹

¹ Ghitu Institute of Electronic Engineering and Nanotechnology, Academiei str. 3/3, Chisinau, Moldova ² Howard University, Washington, USA

*Corresponding author: Albina Nikolaeva, <u>A.Nikolaeva@nano.asm.md</u>

Due to development of new concepts such as the low- dimensional structures [1] and influence the quantum confinement of change carrier acoustic phonon –boundary scattering for increase figure of merit $ZT=\alpha^2\sigma/\chi(T)$ opened up a completely different strategy for ZT enhancement in one- dimensional structures [1].

We study the thermoelectric properties of $Bi_{1-x}Sb_x$ in semimetal and semiconductor wires with different diameter in the presence of magnetic field in the temperature range 4.2-300 K.

Single- crystal $Bi_{1-x}Sb_x$ micro- and nanowires with orientation (1011) with diameter 60 – 1000 nm in glass capillary were prepared by Ulitovsky method [2].

Semimetal Bi-2at%Sb nanowires exhibited a semimetal- semiconductor transition (SMSCT) (according effect size quantization) at d_c = 300 nm which is on five times higher, than d_c for pure Bi nanowires. The reason is that the electron (L), hole (T) energy overlap-according calculations, received from Shubnikov de Haas oscillations in 2 times less then in pure bismuth.

It was establish that at the SMSCT the thermopower becomes positive and considerably increase with reduction of wire diameters.

Here we demonstrate experimentally that $Bi_{1-x}Sb_x$ micro and nanowires display positive shifts in longitudinal and transverse magneto-thermopower in slowly magnetic field (0.4 T), at high range temperature (T< 200 K).

It is know that the production p- branches in thermoelectric converters is a challenge, especially at T< 150 K.

This approach may enable the development of low- cost thermoelectric materials and providing access to high powder thermal energy conversation applications.

Keywords: *nanowires, quantum size effect, magnetothermopower, thermoelectric efficiency.*

References

- 1. Rabina, O., Lin, Yu-M. and Dresselhaus, M. S. Anomalously high thermoelectric figure of merit in Bi1–xSbx nanowires by carrier pocket alignment. In: *Appl. Phys. Lett.*, 2001, 79, pp. 81–83.
- 2. Nikolaeva, A., Gitsu, D., Konopko, L., Graf, M.J. and Huber, T. E. Quantum interference of surface states in bismuth nanowires probed by the Aharonov-Bohm oscillatory behavior of the magnetoresistance. In: *Phys. Rev. B*, 2008, 77, pp. 075332.