
Computer science

SOFTWARE SYNTHESIS FOR EMBEDDED SYSTEMS USING

EXECUTABLE AND TRANSLATABLE UML

Caraulean Valeriu

Technical University of Moldova, Faculty of Radioelectronics and Telecommunication

Email: caraulean@gmail.com

Secrieru Nicolae

Technical University of Moldova, Faculty of Radioelectronics and Telecommunication

Email: secrieru@rgg.md

Abstract: In this paper are described Executable and Translatable UML and how it can be used in

developing of Embedded Systems. Also, is evidentiated all benefits offered by automatic translation

of UML models in source-code and verification of models.

Keywords: UML, XTUML, application model, software design, model translator.

INTRODUCTION

Synthesis is the process of taking a high-level description and turning it into a lower-level

description that, in the case of software, can be compiled directly. Synthesis involves usage of

Automatic Code Generation (ACG).

ACG tools based on the Unified Modeling Language (UML) allow programmers to create

control and calculation programs graphically by using boxes to represent input, output, and

processing algorithms [1, 5, 6]. Some UML tools generate code based on these diagrams. But,

standard features and abilities of UML language is not enough for description of objects which can

be translated in source code ready to be compiled for target. Especially for this, was created a subset

of UML language - Executable and Translatable UML (XTUML), which separates models from

design. It offers possibility to test the model before you have a target, then generate an optimal

target-specific design.

EXECUTABLE AND TRANSLATABLE UML

XTUML is a subset of the UML endowed with rules for execution. With an executable

model, you can formally test the model before making decisions about implementation

Solution space
[technologies basic requirements]

Functional requirements

169

mailto:secrieru@rgg.md
mailto:caraulean@gmail.com

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

technologies, and with a translatable model, you can retarget your model to new implementation

technologies.

Figure 1: Separation of application models and software architecture

XTUML separates application models from software architecture design, weaving them

together through a translator at deployment time, as shown in Figure 1. There are three components

of an XTUML design:

 Application models capture what the application does. The models are executable, which

enables you to validate that your application meets requirements early on. Application

models are independent of design and implementation technologies.

 Software architecture designs, defined as design patterns, design rules, and

implementation technologies, are incorporated by a translator that generates code for the

target system. The software architecture designs are independent of the applications they

support.

 The translator applies the design patterns to the application models according to the

appropriate design rules.

Figure 2: Concurrent design and modeling

The separation of the software architecture design from the application models supports

concurrent design and application analysis modeling, as illustrated in Figure 2. Using XTUML, you

can iteratively and incrementally construct both the application and the software architecture

design.

XTUML
application

model

Software
application

design
Translator

Application-independent
Target optimized
Target specific translator

Application-specific UML model
Target and implementation independent
Evaluation for test and debug

Generated target-optimized code for
modeled components. Interface to
COTS, legacy and hardware code

Integration
and test

Project
initiation

Project structuring and
requirements analysis

Target Source
code

XTUML
application

models

Software architecture design

Translation design elements

Code
generation

Solution space
[technologies basic requirements]

Functional requirements

170

Computer science

UML IN EXECUTION

XTUML incorporates well-defined execution semantics. Objects execute concurrently, and

every object is in exactly one state at a time. An object synchronizes its behavior with another

object by sending a signal interpreted by the receiver's state machine as an event. When the event

causes a transition in the receiver, the procedure in the destination state of the receiver executes

after the action that sent the signal, thus capturing the desired "cause and effect" in the system's

behavior.

The application model therefore contains the decisions necessary to support execution,

verification, and validation, independent of design and implementation. No design decisions need

be made nor code developed or added for model execution, so formal test cases can be executed

against the model to verify that application requirements have been properly addressed. At system

construction time, the conceptual objects are mapped to threads and processors.

TRANSLATION

Translators generate code from models automatically. The translator (Figure 1 again) is

made up of three elements:

 A set of design patterns ("archetypes") to be applied in code generation together with

rules for when a given archetype or model component will be used to build code.

 A translation engine that extracts application model information and applies the

archetypes and rules to generate complete code.

 A run-time library comprising pre-compiled routines that support the generated code

modules.

When generating code, the translator extracts information from the application model, then

selects the appropriate archetype for the to-be-translated model element. The result is a coded

implementation component. This approach is excellent for real-life applications [3,4].

AUTOMATION

XTUML cries out for automated support for execution and translation.

Capabilities provided by XTUML automation include:

 rapid project ramp-up resulting from a streamlined UML subset and a well-defined

process

 concurrent application analysis and design to compress project schedules modeling

 reduced defect rates from early execution of target-independent application models and

test of application-independent designs

Solution space
[technologies basic requirements]

Functional requirements

171

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

 customizable translation generating complete, target-optimized code

 performance tuning and resource optimization

 effective, practical reuse of target-independent application models and application-

independent designs

 reduced maintenance costs and extended product lifetimes

CONCLUSION

This approach was used in various embedded systems implemented by RGG s.r.l., such as

Thermo and Electro Power Stations [4]. Design patterns [3] and XTUML modeling demonstrates

his efficiency and this approach accelerates development and improves the quality, performance,

and resource use of real-time embedded systems.

REFERENCES:

[1] Booch G, Object-Oriented Analysis and Design with Applications. Addison-Wesley, 1993.
[2] Fowler M. and Kendall S.. UML Distilled: Applying the Standard Object Modelling Language.
Addison-Wesley-Longman, 1997.
[3] Caraulean V., Fault Tolerance Techniques For Distributed Systems. – In: Proceedings of
SIELMEN 2003.
[4] Caraulean V., Secrieru N., Designing Distributed Control System For Thermo And
Electropower Stations Using Statecharts. UTM, Anniversary Conference, 2004, Vol. 2
[5] Secrieru N., Caraulean V., UML Designing Distributed Microcontrollers Network. – In:
Proceedings of ICMCS 2002, Vol. 2
[6] UML Notation Guide Version 1.1 , September, 1997. Rational Corp.

Solution space
[technologies basic requirements]

Functional requirements

172

