
Computer science

ASPECTS OF DISTRIBUTED COMPUTING USING BLUETOOTH

NETWORKS

Bogdan Ioan Fărtăţescu

Teaching assistant, PhD. student, “Politehnica” University of Bucharest, Faculty of Control and

Computers, Splaiul Independenţii 313, Bucharest, Romania; fbogdani@cs.pub.ro

Abstract: This paper will focus on the possibility of distributed computing over a Bluetooth

network. In the paper two experiments will be presented, one for a low computational

application and one for a high computational application. Based on these experiments the

paper will conclude on what requirements are in distributed computing over a Bluetooth

network.

Key words: distributed computing, Bluetooth, mobile devices.

INTRODUCTION

As people become more and more mobile, so does the computer industry. The fact that

mobile devices such as PDAs have become as powerful as some PCs creates new horizons for

distributed computing to allow devices to benefit of higher computational capabilities than they can

offer as a single. The Bluetooth technology (1) targeted the mobile computer, the mobile phone,

small personal digital assistants and peripherals.

EXPERIMENTAL

First experiment was a relatively low computational on the distributed part. The experiment

was made on a developed application called GameOfLife. The application involved a development

of a matrix of so called individuals based on the following rules:

1. First stage involves a random generation of individual matrix with 0 symbolizing no

individual and 1 symbolizing a living individual.

2. At every stage, the individuals are evolving; if around a living individual are too many

neighbors the individual dies; if around a place with no individual are enough neighbors, a new

individual appears there. The matrix from one generation is taken in account in all the evolving of

the next generation, meaning that a change in next generation is visible only when the evolution

ends.

Solution space
[technologies  basic requirements]

Functional requirements

151

mailto:fbogdani@cs.pub.ro

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

After every new generation, the image of the matrix is shown on the phone’s screen, and via

infrared port is presented the time spent in both evolution and displaying of the matrix. The matrix

sizes were 150 x 200.

The application was first implemented on a single device. Afterwards, it was re-

implemented in a distributed way, meaning that the computational phase of the matrix was

distributed between 1 or 2 clients. After initializing the matrix, the server sends the clients a part of

the matrix to resolve. Each client compute a part of the matrix and then sends the data to the server.

When all matrix is computed, the server draws the game and another evolving phase started. For

optimizing purposes, the matrix was represented at bit level.

The second experiment was a high computational one application. The application computes

the first prime number greater than a start value, in the experiment being used 12375143. The first

prime number greater than 12375143 is 12375161.

The application starts searching for prime numbers from the start value and increments the

number with a specified step at each new iteration. The application takes all odd numbers between 2

and half of the tested number. If none of these divides the number, then the number is prime and the

searching stops.

As in previous experiment, the application was first implemented on a single device. For this

implementation, the step is 2.

Afterwards, the application was re-implemented in a distributed way, the searching phase

being distributed between 1 or 2 clients. After connecting with the clients, the servers sends the

starting number and the step number. The server starts with the start number. For n clients, the

starting number is:

Client_start_number = Server_start_number + 2*client_number;

All step numbers are equal: Step_number = 2*(n+1).

After all clients have been given the start number and the step number, all clients and the

server start searching for the prime number using the algorithm presented in the implementation on

a single device. When a client finds a prime number, it stops execution and sends the server this

number. The server then verifies if this prime number is smaller than the one he got before. If no

prime number were got before or if this number is smaller, the server retains this as smallest prime

found and sends it to all clients. If a client is searching for a prime number and gets a number from

the server, it verifies if he is testing a value bigger than this number. If so, it stops execution. If not,

he will continue searching until a prime number is found or the value tested becomes bigger than

the number got from the server. This way, a client will always search for prime numbers only if no

smaller prime numbers have been found. The same algorithm applies to the server too. The

Solution space
[technologies  basic requirements]

Functional requirements

152

Computer science

execution stops when all clients and the server have finished searching, and the prime number the

server have is the smallest.

RESULTS AND DISCUSSIONS

The results of the first experiment on single device and in distributed way are presented in

table bellow. For these results the evolution time is the time between starting the evolution and the

moment all clients have send their results and got the lines from the server. The time is measured in

milliseconds.

Time 1st evolution 2nd evolution 3rd evolution 4th evolution 5th evolution

Single
Evol. 2109 2216 2156 2056 2312
Draw 1344 890 609 1105 928
Total 3453 3106 2765 3161 3240

1 client
Evol. 1456 1537 1286 1482 1396
Draw 1218 1190 856 922 836
Total 2674 2727 2142 2404 2232

2
clients

Evol. 1236 1287 1156 1202 1243
Draw 1126 956 920 1089 962
Total 2362 2243 2076 2291 2205

The results are presented in figure 1 in a comparative manner. The performance gain is

presented in figure 2. For 1 client, the medium performance gain is 22.47%. For 2 clients, it’s

28.75%. The network bandwidth has a significant impact over the gain.

Time between generations in Game of Life

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5

Experiment no

T
im

e
(m

s
)

Single

1 client

2 clients

Performance gain in distributed Game of Life

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00

1 2 3 4 5
Experiment no

G
ai

n
 (

%
) Gain for 1

client

Gain for 2
clients

Figure 1 Figure 2

The result for the second experiment for 5 different runs of the application on a single

device and in distributed way are presented in table bellow. For these results the time is the time

between the moment the server begins sending start and step numbers and the moment all clients

and server have finished searching. The time is measured in milliseconds.

1st run 2nd run 3rd run 4th run 5th run
Single 21344 23302 20186 21615 20965
1 client 11286 10854 10487 12076 11147
2 clients 9268 8356 9028 7914 8456

Solution space
[technologies  basic requirements]

Functional requirements

153

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

The results are presented in figure 3 in a comparative manner. The performance gain is

presented in figure 4. For 1 client, the medium performance gain is 47.05%. For 2 clients, it’s

62.27%. The values are very close to the ideal values.

Time for computing the prime number

0

5000

10000

15000

20000

25000

1 2 3 4 5
Experiment no

T
im

e
 (

m
s

)

Single

1 client

2 clients

Performance gain in computing the prime number

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 2 3 4 5

Experiment no
G

ai
n

 (
%

)

Gain for 1
client

Gain for 2
clients

Figure 3 Figure 4

CONCLUSIONS

As seen in experiments presented above, a distributed application over a Bluetooth network

benefits better of distributed execution when the difference between the amount of computed data

and the amount of transmitted data is bigger. When separation has been made between low and high

computational applications, was taken into account the rapport between the amount of time spent

computing inside the replicated part and the total time spent over entire application (2). As a

conclusion, to better benefit from the distributed computing environment, only high computing

applications should be distributed, and also after careful selection of the part of code which is

distributed and optimal communication.

REFERENCES

1. Palo Wireless; Bluetooth Resource Center documentation;
2. Fărtăţescu, B. I.; 2005; “Aspects of Grids Over Mobile Phone Network”; CSCS15;

“Politehnica” University of Bucharest, Bucharest, Romania;

Solution space
[technologies  basic requirements]

Functional requirements

154

