IRREDUCIBLE POLYNOMIALS USED IN INFORMATIONS TRANSMISION SAFETY

Constantin BOCHIȚOIU, Nicolae JULA, Ciprian RĂCUCIU

Technical Military Academy, Bd. G. Coşbuc, 83-85, Bucharest, Romania

Abstract

The work provides a matricial method to test and obtain irreducible polynomials. The method can be applied by a PC for high-degree polynomials. Such polynomials and the corresponding fields are used in codes making

Key-words: eigenvalues, field, cyclic group.

INTRODUCTION

As known [1] every finite p-characteristic field has p^{n} elements. Such a field, noted G_{f}, can be obtained by an irreducible polynomial $f=X^{n}+a_{1} X^{n-1}+\ldots+a_{n-1} X+a_{n} ; a_{i} \in Z_{p}$ and: $G_{f}=\left\{u=\alpha_{0}+\alpha_{1} \theta+\alpha_{2} \theta^{2}+\ldots+\alpha_{n-1} \theta^{n-1} ; \alpha_{i} \in Z_{p}, f(\theta)=0\right.$.The field operations are the usual polynomial addition and their modulo f multiplication.

For all irreducible n-degree polynomials f the fields G_{f} are isomorphic and for this reason on note $G_{p^{n}}$ instead of G_{f} when the polynomial f isn't used.

The elements of the field $G_{p^{n}}$ are the roots of all irreducible polynomials those degree divide n and consequently, $p^{n}=\sum_{m / n} m \cdot N(m)$ where $N(m)$ is the number of m-degree irreducible polynomials. As a result we obtain the recurrence formula:

$$
N(n)=\frac{1}{n} \cdot\left(p^{n}-\sum_{\substack{m / n \\ m<n}} m \cdot N(m)\right)
$$

For example, in case $p=3$, the 1 -degree irreducible polynomials are the three polynomials $X+a ; a=0,1,2$ that is, $N(1)=3$. The formula gives: $N(2)=3, N(3)=8, N(4)=18$, and so on.

The multiplicative group $G_{p^{n}}^{*}$ is a cyclic one and, as a result,

$$
X^{p^{n}}-X=\prod_{\substack{f-\text { irred } \\ \text { deg. } f / n}} f
$$

Moreover, $G_{p^{m}} \subset G_{p^{n}} \Leftrightarrow m / n$ and in this case, $G_{p^{m}}=\left\{u \in G_{p^{n}} ; u^{p^{m}}=u\right.$

§1. THE MATRIX $\boldsymbol{A}_{\boldsymbol{f}}$

For each polynomial $f=X^{n}+a_{1} X^{n-1}+\ldots+a_{n-1} X+a_{n} ; a_{i} \in Z_{p}$ the matrix:

$$
A_{f}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & (-1)^{n-1} a_{n} \\
1 & 0 & 0 & \ldots & 0 & (-1)^{n-1} a_{n-1} \\
0 & 1 & 0 & \ldots & 0 & (-1)^{n-1} a_{n-2} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & (-1)^{n-1} a_{2} \\
0 & 0 & 0 & \ldots & 1 & (-1)^{n-1} a_{1}
\end{array}\right)
$$

has f as characteristic polynomial.

§2. TESTING THE IRREDUCIBILITY OF POLYNOMIALS

We note $K=G_{p^{n!}}$. This field can be obtained by an $n!$-degree irreducible polynomial which not need to mention. The field K plays the role of an algebraic closure [2]. It contains all the roots of all m-degree polynomials for $m \leq n$.

In testing the irreducibility of an n-degree polynomial f we can suppose f has no multiple factors. They can be obtained from the polynomial $\left(f, f^{\prime}\right)$.

The distinct roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of f in the field K are the eigenvalues of the matrix A_{f}. Consequently, there is an invertible matrix T having the elements in K, such that:

$$
A_{f}=T \cdot\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right) \cdot T^{-1}
$$

and for each natural number k we have:

$$
A_{f}^{k}=T \cdot\left(\begin{array}{cccc}
\lambda_{1}^{k} & 0 & \ldots & 0 \\
0 & \lambda_{2}^{k} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{n}^{k}
\end{array}\right) \cdot T^{-1}
$$

THEOREM
The n-degree polynomial f is irreducible if and only if:

$$
\begin{aligned}
& \text { 1. } A_{f}^{p^{n}}=A_{f} \\
& \text { 2. } \operatorname{rang}\left(A_{f}^{p^{m}}-A_{f}\right)=n \text { for } m=1,2, \ldots,\left[\frac{n}{2}\right]
\end{aligned}
$$

PROOF. Let f be irreducible. Then the roots of f vanish the polynomial $X^{p^{n}}-X$ and
consequently, $\quad A_{f}^{p^{n}}=T \cdot\left(\begin{array}{cccc}\lambda_{1}^{p^{n}} & 0 & \ldots & 0 \\ 0 & \lambda_{2}^{p^{n}} & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & \lambda_{n}^{p^{n}}\end{array}\right) \cdot T^{-1}=T \cdot\left(\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right) \cdot T^{-1}=A_{f}$, that is, the first condition. For the second, from the relations:

$$
A_{f}^{p^{m}}-A_{f}=T \cdot\left(\begin{array}{cccc}
\lambda_{1}^{p^{m}} & 0 & \ldots & 0 \\
0 & \lambda_{2}^{p^{m}} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{n}^{p^{m}}
\end{array}\right) \cdot T^{-1}-T \cdot\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right) \cdot T^{-1}=
$$

$$
=T \cdot\left(\begin{array}{cccc}
\lambda_{1}^{p^{m}}-\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2}^{p^{m}}-\lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{n}^{p^{m}}-\lambda_{n}
\end{array}\right) \cdot T^{-1}
$$

we infer that the number $n-\operatorname{rang}\left(A_{f}^{p^{m}}-A_{f}\right)$ is exactly the number of $\lambda_{i} ; \lambda_{i}^{p^{m}}-\lambda_{i}=0$. But such roots vanish an irreducible m-degree polynomial; $m<n$ and then f is reducible.

Conversely, the first condition means that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are roots of irreducible polynomials those degree are divisors of n. The second condition assures that these degrees are not less then n. Q.E.D.

3. REMARK

The theorem provides the following algorithm to test the irreducibility of an n-degree polynomial f : for $m=1,2, \ldots, \frac{n}{2}$ is to calculate $A_{f}^{p^{m}}=\left(A_{f}^{p^{m-1}}\right)^{p} ; r_{m}=\operatorname{rang}\left(A_{f}^{p^{m}}-A_{f}\right)$.If all the
numbers r_{m} are equal to n we deduce f is irreducible. Otherwise, if m is the first number having $r_{m}<n$ then f has m-degree irreducible factors. Their number is $\frac{1}{m}\left(n-r_{m}\right)$.

For $p=2$ the algorithm is simpler: it consists from successive squaring of matrices starting with A_{f}.

4. CONCLUSIONS

The method use matricial calculus to test the irreducibility of polynomials, used in making the codes. The most used case is $p=2$ for which the algorithm is simpler. One can test the irreducibility of large degree polynomials with an ordinary PC.

REFERENCES

[1] S. LANG Algebra, Addison Wesley Publishing Company, New York, 1969
[2] C. DOCHIȚOIU, Algebraic closure of a finite field, Proceedings of the SSM Conference, Craiova, 1999.

