
Computer science

PARAMETER TRANSMISSION PROTOCOL FOR

GRID IMAGE PROCESSING

Pescaru Dan1, Toma Corneliu2, Chirila Ciprian3, Gui Vasile4, Tundrea Emanuel 5

(1, 3, 5) “Politehnica” University of Timisoara, Department of Computer

Science, Bd. V. Parvan no 2, 300223 Timisoara, Romania,

e-mails: dan@cs.utt.ro, chirila@cs.utt.ro, emanuel@emanuel.ro;

(2, 4) “Politehnica” University of Timisoara, Department of

Communications, Bd. V. Parvan no 2, Timisoara, 300223 Romania,

e-mails: ctoma@etc.utt.ro, vasile.gui@etc.utt.ro.

Abstract: This paper describes a protocol for parameters transmission used in a framework

for parallel implementation of a large class of image processing algorithms. The purpose of the

framework is to develop these algorithms with a minimum parallel programming knowledge. This

work can be applied in automation of the technological processes witch imply large bitmap images

processing. The aim of this research is to provide a simply, portable and efficient programming

interface for these algorithms. It is based on Java technology, portable and widely accepted in

industry. Efficiency is gained using a message passing distributed model on JPVM platform.

Achievement of these goals is proved through examples and experimental results.

Keywords: image processing, grid computing, distributed computing, MIMD, JPVM.

1. INTRODUCTION

The requirements for industrial image processing algorithms [6] can be achieved only by

using a distributed environment. These kind of processing environment not only helps in optimum

utilization of such resources but also helps in achieving better throughput using multiple processors

in parallel.

Grid is a type of parallel and distributed system that enables the sharing, selection, and

aggregation of geographically distributed "autonomous" resources dynamically at runtime

depending on their availability, capability, performance, cost, and users' quality-of-service

requirements [1].

Following these facts, usage of a grid as base environment for image processing is a

promising option. In a previous work we developed an architecture for this kind of environment,

Solution space
[technologies basic requirements]

Functional requirements

79

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

named PFIP [7]. It is based on Java technology, portable and widely accepted in nowadays industry.

Efficiency is gained using a message passing distributed model on JPVM [3, 4] platform. This

technology is bases on old PVM [5] architecture that has a large support of researcher community.

In this paper we enhance the capabilities of PFIP by adding a protocol for parameter transmission to

the image processing algorithms.

2. EXPERIMENTAL RESULTS

The objective of PFIP (Parallel Framework for Image Processing) is to provide a

framework for implementing parallel processing of image processing algorithms. It consists in a

master (derived from PFIPMaster) class that create N clients (derived from PFIPSlave). Each

client could process either a specific function on different image partitions or different functions on

the same partition. The general architecture is presented in Fig. 1.

Fig. 1. PFIP general architecture

The PFIPMaster provides a minimal interface for general services, like: setting the number

of slaves, splitting and packing an bitmap image, sending data to slaves, receiving results and

assembling results.

The PFIPWorker class provides common functionality like: connection to master, receiving

image together with all necessary parameters, calling algorithm implementation, sending back the

result to master and cleanup worker resources.

The proposed protocol for parameter exchange under the presented architecture is a

request/response protocol. A master process sends a request to the slaves in the form of a request

method followed by packed algorithms data over a connection with them. The slaves responds with

a status information composed of a success or error code, followed by a message containing the

computational load information. This information is used by the master in order to balance the

tasks distribution over the grid.

The slave processes could also initiate a dialog when local processing is done. The request

will contain the results, packed as described below and some statistical information about resource

Solution space
[technologies basic requirements]

Functional requirements

80

JPVM Platform

PFIPMaster

PFIPSlave

PFIPSlave

PFIPSlave

Computer science

usage. The response of the server is just an acknowledge that will clear all buffers allocated at the

slave level.

Data and control information exchanged through this protocol are packed and prepared

using a special package of classes named PFIPUtility. The content of this package is:

 PFIPImage - manage the internal representation of a bitmap image

 PFIPImageCollection - manage a collection of PFIP images, usually all slices that belongs

to a decomposed image

 PFIPParameter - manage the internal representation of a basic type parameter like integers,

floats or logical

 PFIPParameterCollection - manage a collection of PFIP parameters, usually gather all

parameters necessary in algorithm implemented by a PFIP worker

 PFIPControlInformation - pack statistical information about computational resources used

for tasks balancing

The defined message types are: request-processing, acknowledge-processing, request-

information, send-status, push-results, acknowledge-results.

To prove PFIP concept and transmission protocol overhead we choose an image segmentation

algorithm based on multi-channel texture-filtering [2]. The resulting speed-up depends of the

image size and to the ratio between computers and network speed. All processes was run over a

100 MB LAN consists in 4 HP PII 400 MHz workstations running Microsoft Windows NT 4.0

Workstation, Java v. 1.4.1 and JPVM v. 0.2.1.

Image size Numbers of
involved PC

Time Speed-up Protocol
overhead

16 KB 1 64’’
16 KB 4 60’’ 1.06 73% (44’’)
64 KB 1 183’’
64 KB 4 62’’ 2.95 50% (16’’)

216 KB 1 546’’
216 KB 4 157’’ 3.47 13% (20’’)

Fig. 2. Experimental results

The results are presented in Fig. 2. They demonstrate the speed-up gathered using PFIP

considering various image sizes and the transmission protocol overhead. All experiments use the

same algorithm, first implemented as standalone non-parallel program on one computer and second

as PFIP implementation using four computers.

Solution space
[technologies basic requirements]

Functional requirements

81

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

3. DISCUSSION

This paper describes a protocol based on a framework that allows an image-processing

researcher to develop parallel applications very easy, in an almost transparent manner. All software

involved in this framework, respectively jdk and jpvm, is freeware.

4. CONCLUSIONS

The protocol presented here as part of the PFIP framework satisfies the need of transferring

parameters through a distributed image processing application. As presented in section 2, despite of

that relative simplicity, important performance issues are obtained. As a future work we propose an

extension consisting in a standard mechanism to enabling user control of tasks-per-client granularity

based on information collected from the grid points.

5. REFERENCES

[1] Berman F., Fox G., Hey A.J.G., 2003, “Grid Computing: Making The Global Infrastructure a
Reality”, John Wiley & Sons.
[2] Comer L. M., Delp E. J., 1995, “Multiresolution Image Segmentation”, Proceedings of IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing - May 1995, Detroit, USA, Vol. 4, pp. 2415-
2418.
[3] Ferrari A.J., 1997, “JPVM”, Technical report CS-97-29, Department of Computer Science,
University of Virginia, Charlottesville, VA 22903, USA.
[4] Ferrari, A.J., 1998, "JPVM: Network Parallel Computing in Java", JavaWorld’98
[5] Geist A., Beguelin A., Dongarra J., Jiang W., Manchek R., Sunderam S., 1994, “PVM: Parallel
Virtual Machine”, MIT Press.
[6] Parker J.R., 1997, “Algorithms for Image Processing and Computer Vision”, Wiley Computer
Publishing.
[7] Pescaru D., Mocofan M., 2004, “Efficient Implementation for Image Processing Algorithms”,
6th International Conference on Technical Informatics – CONTI’04, Timisoara, Romania, Vol.
49(63)/2004 No.4, pp. 217-222.

Solution space
[technologies basic requirements]

Functional requirements

82

