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I. INTRODUCTION 

 A two-dimensional electron system in a strong 

perpendicular magnetic field reveals fascinating 

phenomena such as the integer and fractional quantum 

Hall effects. The discovery of the fractional quantum Hall 

effect (FQHE) fundamentally changed the established 

concepts about charged single-particle elementary 

excitations in solids [1, 2]. 

 In this paper we study a coplanar electron-hole 

system with electrons in a conduction band and holes in a 

valence band, both of which have Landau levels in a 

strong perpendicular magnetic field. Earlier, this system 

was studied in a series of papers [3-9] mostly dedicated to 

the theory of 2D magnetoexcitons. This system bears 

some resemblance to the case of a bilayer electron system 

with half-filled lowest Landau levels in the conduction 

bands of each layer [10]. The coherent states of electrons 

in two layers happened to be equivalent to the BEC of the 

quantum Hall excitons [11] formed by electrons and holes 

in different layers. The system we are interested in has 

only one layer, with electrons in conduction band and 

holes in the valence band of the same layer created by 

optical excitation or by p-n doping injection (both of these 

methods can be called "pumping"). In the case of a single 

excited layer which we consider, the density of excitons 

can be quite low, so that the electron Landau level and the 

separate hole Landau level are each only slightly 

occupied, and Pauli exclusion and phase space filling do 

not come in to play. 

II. HAMILTONIAN OF THE BOSE–EINSTEIN 

CONDENSATION OF MAGNETOEXCITONS 

The effective Hamiltonian describing the interaction of 

electrons and holes lying on the LLLs is 

 (1) 

The coefficients ,  and  are the 

supplementary indirect interactions between electrons and 

holes that appear due to the simultaneous virtual quantum 

transitions of two particles from the LLLs to excited 

Landau levels (ELLs) and their return back during the 

Coulomb scattering processes and are proportional to the 
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small parameter , where  is the 

ionization potential of the magnetoexciton,  is 

the cyclotron energy, and B is the magnetic field strength 

[9]. The degeneracy of the Landau level N equals 

, where  is the magnetic length  

and S is the surface layer area. Here  are the density 

fluctuation operators expressed through the electron 

 and hole  density operators as follows 

  

   (2) 

  

  

  

  

The density operators are integral two-particle operators. 

They are expressed through the single-particle creation 

and annihilation operators  for electrons and  

for holes.  is the dielectric constant of the background; 

 and  are chemical potentials for electrons and 

holes. Coefficients ,  and  were deduced 

in [9, 12]. 

 As discussed in previous papers [5-9, 13], the 

breaking of the gauge symmetry of the Hamiltonian (1) 

can be achieved using the Keldysh-Kozlov-Kopaev [14] 

method using the unitary transformation  

  (3) 

where  and  are the creation and annihilation 

operators of the magnetoexcitons and  is the wave 

vector of the condensate. In the electron-hole 

representation they are [5-9]: 

  (4) 

  

BEC of magnetoexcitons leads to the formation of a 

coherent macroscopic state as a ground state of the system 

with wave function 

  (5) 

Here  is the vacuum state for electrons and holes. 

Though we kept arbitrary value of , nevertheless our 

main goal is the BEC with 0k   and we will consider 

the interval 0.5 0kl  . The function (5) will be used to 

calculate the averages values of the type ( ) ( )D Q D Q . 

The transformed Hamiltonian (1) looks like 

   †ˆ ˆ ˆ ˆ ,ex exT N HT NH    (6) 

and is succeeded, as usual, by the Bogoliubov u-v 

transformations of the single-particle Fermi operators 
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 (7) 

( ) 0.p g k    

Here 
2

v( ) v yik tl
t e


 . The coefficients 

2cos( 2 )exu l n  and 2v sin( 2 )exl n  were 

determined in Ref.[8]. The equality v sin(v)  can be 

satisfied only at v 1 . 

 Along with this traditional way of transforming 

the expressions of the starting Hamiltonian (1) and of the 

integral two-particle operators (2) and (4), we will use the 

method proposed by Bogoliubov in his theory of 

quasiaverages [15], remaining in the framework of the 

original operators. The new variant is completely 

equivalent to the previous one, and both of them can be 

used in different stages of the calculations. For example, 

the average values of products of two integral two-particle 

operators can be calculated using the wave function (5) 

and u-v transformations (7), whereas the equations of 

motion for the integral two-particle operator can be 

simply written in the starting representation. 

 The Hamiltonian (1) with the broken gauge 

symmetry in the lowest approximation of the theory of 

quasiavereges [15]. Side by side with the last term in (7) 

there are another smaller terms breaking the gauge 

symmetry, which were neglected. This approach is named 

as quasiaverages theory approximation 

[11]. 
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 (8) 

Here the parameter  , which determines the breaking of 

the gauge symmetry, depends on the chemical potential 

m  and on the square root of the density similar to the case 

of weakly non-ideal Bose-gas considered by Bogoliubov 

[13] . In our case the density is proportional to the filling 

factor 
2v  . We have: 
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( ) ~k r  determines the shift of the ionization 

potential lI  [9]. 

III. ENERGY SPECTRUM OF COLLECTIVE 

ELEMENTARY EXCITATIONS AT WAVE VECTOR 

K=0 

The equations of motion for the integral two-particle 

operators with wave vectors 0P   in the special case of 

BEC of magnetoexcitons with 0k   are 
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where ( ) ( ) ( ) / 2W Q W Q V Q N  . 

Following the equations of motion (10) we have 

introduces four interconnected Green's functions 

1 ( , )jG P t  as well as their Fourier transformations 

1 ( , )jG p   at 0T   [16, 17] of the type 

1 ( , ) ( , ); ( ,0)j jG P t A P t B P , where 1( , ) ( , ),A P t d P t

†
2 ( , ) ( , ),A P t d P t  3( , ) ( , ) / ,A P t P t N

4 ( , ) ( , ) /A P t D P t N  and an arbitrary operator 

( ,0)B P  because its choice does not influence on the 

energy spectrum of the system. These Green's function 

can be named as one-operator Green's functions. At the 

right hand sides of the corresponding equations of motion 

there is a second generation of the two-operator Green's 

functions. A second generation of equations of motion 

derived for them containing in their right hand sides the 

three-operator Green's functions. Following the procedure 

proposed by Zubarev [17] the truncation of the chains of 

equations of motion was made and the three-operator 

Green's functions were presented as a products of one-

operator Green's functions , ( , )i jG P   multiplied by the 

averages of the type ( ) ( )D P D P . The average values 

were calculated using the ground state wave function (5) 

and the u-v transformations (7). For example, it was 

obtained 
2 2( ) ( ) 4 v ; ( ) ( ) 0.D P D P u N P P       (11) 

The Zubarev procedure is equivalent to a perturbation 

theory with a small parameter of the type 
2 2v (1 v ) . The 

closed system of Dyson equations has the form 
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There are 16 different components of the self-energy parts 

( , )jk P   forming a 4 4  matrix. Four diagonal self-

energy parts are: 

11 22

2

2
2 2

( , ) ( , )

( ) ( )
( ) ( )

[ ]
( ) cos

2

( ) ( )

z

Q P

P P i

D P D P
E P P

N

P Q l
U Q

i E P Q P Q

    m

  m





        


    

 
  
 


      



 

 

 

33 2

2
2

( ) ( )
( , )

( )

[ ]
( ) ( ) ( ) sin

2

z

Q P

D P D P
P i

N i

P Q l
U Q U Q U Q P

  
 




    



 
     

 
 


 (13) 

 

 

44

2
2

2
2

2

2 ( ) ( )
( , )

( )

[ ]
( ) ( ) ( ) sin

2

( ) ( ) [ ]
( ) ( ) ( ) sin

2( )

z

Q P

z

Q P

D P D P
P i

N i

P Q l
W Q U Q P U P

D P D P P Q l
U Q U P U Q

N i

  
 

 






    



 
    

 
 

  
     

   





 

They contain real and imaginary parts as follows 

( , ) ( , ) ( , ).ij ijP P i P        The cumbersome 

dispersion equation for electron-hole collective 

excitations is expressed in general form by the 

determinant equation 

 det ( , ) 0.ij P      (14) 

Due to the structure of the self-energy parts, it separates 

into two independent equations. One of them concerns 

only the optical plasmon branch, corresponding to 

oscillations of the difference of electron and hole densities 

and has a simple form: 

  33( , ) 0.P      (15) 

It does not include at all the chemical potential m  and the 

quasiaverage constant  . But the average values depends 

also on the condensate wave function (5). 

 The solution of the equation (15) is 
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The right hand side of this expression at small values of P 

has a dependence 
4

P  and tends to saturate at large 

values of P. The optical plasmon branch ( )OP P  has a 

quadratic dispersion law in the long wavelength limit and 

saturation dependence in the range of short wavelengths. 

Its concentration dependence is of the type 2 2v (1 v )  

what coincides with the concentration dependencies for 

3D and 2D plasmons. The obtained dispersion law is 

represented in the Fig.1. 

 The second equation contains the self-energy 

parts 11 , 22 , 44 , 14 , 41 , 24  and 42 , which 

include the both parameters m  and   and has the form 
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 (17) 

The solutions of the equation (17) describe the exciton 

energy and quasienergy branches arising due to the 

normal and abnormal Green's functions as well as the 

acoustical plasmon branch. The ideal magnetoexciton gas 

can exist only in the case 2v 0 , with an infinitesimal 

number of excitons, but without plasma at all. In this case 

the plasmon frequency is zero whereas the exciton of one 

exciton is possibly. 

 The acoustical plasmon branch corresponding to 

oscillations of the total particle density has a dispersion 

law completely different from the optical plasmon 

oscillations. It has an absolute instability beginning with 

small values of wave vector going on up to the 

considerable value 2Pl  . In this range of wave vectors, 

the optical plasmons have energies which do not exceed 

the activation energy (0)U . The supplementary 

Hamiltonian gives rise to general attraction in Hartree 

approximation, characterized by the coefficients (0)U . It 

plays the role of activation energy if one should like to 

overpass this attraction. The ground state of the system is 

unstable as regards the generation of the acoustical 

plasmons. It means that the system becomes a localized 

generator of the growing acoustical waves without their 

traveling through the system as in the case of convective 

instability. 

 In the case of 2D magnetoexcitons in the BEC 

state with small wave vector 0.5kl   described by the 

Hamiltonian (10), the both initial continuous symmetries 

are lost. It happened due to the presence of the term 
†( ( ) ( ))d k d k   in the frame of the Bogoliubov theory 

of the quasiaverages. Nevertheless the energy of the 

ground state as well as the self-energy parts ( , )ij P   

were calculated only in the simplest case of the 

condensate wave vector 0k  . These expressions can be 

relevant also for infinitesimal values of the modulus | |k  

but with a well defined direction. In this case the 

symmetry of the ground state will be higher than that of 

the Hamiltonian (8), what coincides with the situation 

described by Georgi and Pais [18]. It is one possible 

explanation of the quasi-NG modes appearance in the 

case of exciton branches of the spectrum. 

 Another possible mechanism of the gapped 

modes appearance is the existence of the local gauge 

symmetry, the breaking of which leads to the Higgs effect 

[19]. The interaction of the electrons with the attached 

vortices gives rise to a gapped energy spectrum of the 

collective elementary excitations as was established in 

Ref.[20, 21]. The number of the NG modes in the system 

with many broken continuous symmetries was determined 

by the Nielsen and Chadha [22] theorem. It states that the 

number of the first-type NG modes IN  being accounted 

once and the number of the second type NG modes IIN  

being accounted twice equals or prevails the number of 

broken generators BGN . It looks as follows 

2I II BGN N N ± . In our case the optical plasmon branch 

has the properties of the second-type NG modes. We have 

0;IN   1IIN   and 2BGN  . It leads to the equality 

2 II BGN N . The three branches of the energy spectrum 

are represented together in the Fig.1. One of them is a 

second-type Nambu-Goldstone(NG) mode describing the 

optical plasmon-type excitations, the second branch is the 

first-type NG mode with absolute instability describing 

the acoustical-type excitations and the third branch is the 

quasi-NG mode describing the exciton-type collective 

elementary excitations of the system. It is a gapless true 

NG mode in zero order approximation on the small 

parameter 
2 2v (1 v )  and become gapped in the first order 

approximation due to the fact that the symmetry of the 

ground state with small condensate wave vector k  is 

greater than the symmetry of the Hamiltonian. 

 

 
Fig.1 Three branches of the collective elementary 

excitations: the exciton-type quasi-NG mode with a gap in 

the point 0pl   (dash-dotted line); the second-type NG 

mode describing the optical plasmons(solid line) and the 

first-type NG mode with absolute instability (dotted line) 

describing the acoustical plasmons(dashed line). 
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IV. ENERGY SPECTRUM OF COLLECTIVE 

ELEMENTARY EXCITATIONS AT WAVE VECTOR 

K=3.6 

Now we obtain solutions of the dispersion equation 

(17) in the case of finite magnitude of wave vectors 

3 4kl  , when the Bose-Einstein condensed 2D 

magnetoexcitons can exist in a form of metastable 

dielectric liquid phase or of dielectric droplets if the 

correlation energy is taken into account. The correlation 

energy will not be included in the calculations below. 

Therefore, the average value ˆ ˆ( ) ( )Q Q    are 

determined in HFBA by the formula  

 
2

2 2 2 [ ]
ˆ ˆ( ) ( ) 4 v sin .

2

zK Q l
Q Q u N 

 
   

 
 (18) 

They are characterized by a coherence factor 
2 2([ ] / 2)zsin k Q l , which vanishes in the point 0k  . 

The collective elementary excitations are calculated 

for the conditions 3 4kl   and 
2 2

mv v  when the 

ground state of the magnetoexcitons is similar to the 

metastable dielectric liquid phase if the correlation energy 

is taken into account. However, in the present 

consideration the collective elementary excitations, the 

self-energy parts and the chemical potential are 

determined only in the HFBA without correlation 

corrections. 

Even in collinear geometry the diagonal self-energy 

parts ( , )ii K q    with 1,2,3,4i   and 3 4kl    can not 

be calculated analytically for arbitrary values of the 

relative wave vector q . By this reason we will consider 

the analytical expressions for 3 4kl    and 1ql kl   

using series expansions of the small values 1ql   

compared with 3 4kl   .  

The self-energy parts 11( , )k q    and 22 ( , )k q    

in collinear geometry are  
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We take their series expansion on the parameter 

1ql  , which is small compared with 3 4kl   . At the 

same time we will expand the denominator 

( )E K q Q      in Eq. (24) taking into account 

that the most probable value of Ql  is unity ( 1)Ql   and 

 is less than the elementary excitation wave vector 

. 

In this approximation, with ;  and , we 

can write 

 
1 1

...
( ) ( )E k q Q E k q   

 
      

 (20) 

Consider the remaining two diagonal self-energy parts  

and . Their imaginary components are equal to zero. The 

initial expression is 

(21) 

The last diagonal self-energy part in  has 

the initial form 

(22) 

The self-energy parts in the case of Bose-Einstein 

condensed magnetoexcitons depend on the average value 

 (18). The expression  on 

the other hand essentially depends on the condensate 

wave vector  and vanishes at the point . 

The obtained results are shown in the Fig.2. There are 

three energy branches. One of them is a gapless branch. It 

describes the dispersion law of the acoustical plasmons 

arising in the e-h system in condition of BEC of 2D 

magnetoexcitons with wave vectors . This 

dispersion law depends on the relative wave vector  

counted from the condensate wave vector . The energy 

spectrum describes the acoustical plasmons in the 

reference frame moving together with the condensate. By 

this reason it is not affected by the group velocity of the 

condensate as it happened with the exciton energy 

spectrum described in the laboratory reference frame. 

The appearance of the second gapped energy branch in 

addition to the zero order exciton energy branch is due to 

the presence of the Bose-Einstein condensate generating 

many-particle complexes composed of the condensed 

excitons and noncondensed excitons or plasmons. 
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Fig.2 The energy spectrum of the mixed exciton-

plasmon (solid line) and acoustical plasmon (dashed 

lines) collective elementary excitations of the Bose-

Einstein condensed 2D magnetoexcitons with 

dimensionless wave vector  and filling factor 

. 

V. CONCLUSIONS 

The energy spectrum of the collective elementary 

excitations of a 2D electron-hole system in a strong 

perpendicular magnetic field in the state of Bose-Einstein 

condensation with wave vector   was investigated in the 

framework of the Bogoliubov theory of quasiaverages. 

The starting Hamiltonian describing the e-h system 

contains not only the Coulomb interaction between the 

particles lying on the lowest Landau levels, but also a 

supplementary interaction due to their virtual quantum 

transitions from the LLLs to the excited Landau levels 

and back. This supplementary interaction generates, after 

the averaging on the ground state BCS-type wave 

function, direct Hartree-type terms with an attractive 

character, exchange Fock-type terms giving rise to 

repulsion, and similar terms arising after the Bogoliubov 

u-v transformation. The interplay of these three 

parameters gives rise to the resulting nonzero interaction 

between the magnetoexcitons with wave vector   

and to stability of their BEC as regards the collops.  

 The separated electrons and holes remaining on 

their Landau orbits can take part in the formation of 

magnetoexcitons as well as in collective plasma 

oscillations. Such possibilities were not taken into 

consideration in the theory of structureless bosons or in 

the case of Wannier-Mott excitons with a rigid relative 

electron-hole motion structure without the possibility of 

the intra-series excitations. 

 The energy spectrum of the collective elementary 

excitations consists of four branches. Two of them are 

excitonic-type branches(energy and quasienergy 

branches). The other two branches are the optical and 

acoustical plasmon branches. 

We can say that results obtained in our system are similar 

to what was obtained in system of BEC of the quantum 

Hall excitons[11]. 

 In these both models there is only one gapless 

Nambu-Goldstone mode between four branches of the 

energy spectrum. In both models the exciton branches of 

the spectrum are not gapless and differ from the NG 

modes. In our case the exciton energy and quasienergy 

branches corresponding to normal and abnormal Green's 

functions have a gaps in the point , a roton-type segments 

in the region of intermediary wave vectors  and 

saturation-type behaviors at great values of  . 
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