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I. INTRODUCTION 

Fulde, Ferrell [1], Larkin and Ovchinnikov [2] predicted 

that an unconventional, nonuniform superconducting pairing 

(FFLO) with a non-zero momentum of a pair may occur in a 

ferromagnetic background, i.e. in the presence of an 

exchange field. In conventional (s-wave) superconductors 

such state can only be observed in a very small range of 

parameters and has not been realized up to now 

experimentally. However, Buzdin et al. [3] predicted FFLO-

like pairing in S/F layered structures, where the pair 

amplitude in the F-material establishes due to penetration of 

the singlet electron pairs from the superconductor through 

the S/F interface. More advanced analysis was worked out 

by Tagirov [4] and Fominov et al. [5]. The most spectacular 

prediction of these theories is that not only Tc oscillations but 

also complete suppression of superconductivity may occur in 

a certain range of thicknesses of the F-layer followed by its 

unusual re-entrance with increasing of the F-layer thickness. 

Superconducting spin-switch based on proximity effect in 

Ferromagnet – Superconductor – Ferromagnet (F/S/F) 

layered system was investigated then theoretically in [6,7] 

using hypothetical materials and their thicknesses. The 

thicknesses tuning of the superconducting and ferromagnetic 

layers in SF -structures is the goal of the present work, to 

investigate and optimize superconducting spin-switch effect 

for Nb/Cu41Ni59 based nanoscale layered system.  

 

II. FILMS DEPOSITION AND CHARACTERIZATION 

We developed a special advanced technological process of 

superconducting layers preparation [8] for reliable 

fabrication of S/F structures with the layer thickness scale of 

several nanometers. The S and F layers were deposited by 

magnetron sputtering on commercial (111) silicon substrates 

at room temperature. The base pressure in the ―Leybold 

Z400‖ vacuum system was about 2×10
-6

 mbar. Pure argon 

(99.999%, ―Messer Griesheim‖) at a pressure of 8×10
-3

 mbar 

was used as sputter gas. A silicon buffer layer was deposited 

using RF magnetron. It produced a clean interface for the 

subsequently deposited niobium layer. To obtain flat and 

high-quality Nb layers with thickness in the range of 5-15 

nm, the rotation of the target around the symmetry axis of 

the vacuum chamber was realized. A dc-motor drive moved 

the full-power operating magnetron along the silicone 

substrate of the 80×7 mm
2
 size during the deposition. Thus, 

the surface was homogeneously sprayed with the sputtered 

material. The effective growth rate of the Nb film in this 

case was about 1.3 nm/sec. The deposition rate for a fixed, 

non-moving target would be about 4-5 nm/sec.  

 
Fig.1. Sketch of the layers stack in the deposited S/F-specimen. 

 

The next step of the procedure was deposition of a wedge-

shaped ferromagnetic layer utilizing the intrinsic spatial 

gradient of the deposition rate of the sputtering material. The 

Cu40Ni60 target was RF sputtered with a rate of 3-4 nm/sec, 

resulting in practically the same composition (Cu41Ni59) of 

the alloy in the film. To prevent a destructive influence by 
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the atmospheric conditions, the last deposited layers were 

coated by a silicon cap of about 5-10 nm thickness (see a 

sketch of the prepared samples in Fig. 1).  

Samples of a width of about 2.5 mm were cut 

perpendicular to the wedge to obtain a set of S/F bilayer 

strips with varying Cu41Ni59 layer thickness dF, for Tc(dF) 

measurements. Aluminum wires of 50 μm in diameter were 

bonded to the strips by ultrasonic bonder for four-probe 

resistance measurements.  
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Fig. 2. Scanning Auger electron spectroscopy (AES) of a 

Si(substrate)/Si(buffer)/Nb/Cu1-xNix/Si(cap) sample, dNb =7.5 nm and 
dCuNi=32.9 nm (thickness according to the RBS data). 

To study the quality of interfaces between the layers we 

performed Auger electron spectroscopy (AES) 

measurements of specimens. A defocused Xe-ion beam 

erodes a crater into the film with inclination angles of the 

scarps of only a few degrees or below. An electron beam 

then scans the shallow crater. The emitted Auger electrons 

reveal the lateral distribution of elements. As a result, one 

reconstructs the elemental concentration as a function of the 

sample depth profile. The AES data for the Nb/Cu1-xNix 

specimen are shown in Fig. 2. There are about 59 at.% Ni (in 

agreement with the RBS data) and 39.0 at.% Cu in the Cu1-

xNix film. There is a small concentration of O, C and N 

impurities at the Nb/Cu1-xNix interface as a result of physical 

absorption of gases from the residual atmosphere of the 

vacuum chamber. The Cu1-xNix/Si(cap) interface is free of 

contaminations. 

The samples for the Tc(dS) measurements were prepared 

with the same procedure, but  with a Cu41Ni59 film of 

constant thickness on the top of a wedge-shaped Nb layer. In 

addition, single flat Nb films and single CuNi-wedge shaped 

layers were prepared in a similar way for materials 

characterization. 

III.   SUPERCONDUCTING PROPERTIES OF 

NB/CU41NI59 BILAYERS 

Fig. 3 demonstrates the dependence of the 

superconducting transition temperature for SF samples on 

the thickness of the Cu41Ni59 layer. For specimens with 

dNb ≈ 14.1 nm the transition temperature Tc reveals a non-

monotonic behavior with a very shallow minimum at about 

dCuNi ≈ 6.8 nm, it is just the qualitative behavior. The 

transition temperature Tc reveals an expressed non-

monotonic behavior with a deep minimum at dCuNi about 7.9 

nm. For the series of specimens with dNb ≈ 6.2 nm the 

transition temperature Tc decreases sharply for increasing 

ferromagnetic Cu41Ni59 layer thickness, until dCuNi ≈ 3.8 nm. 

Then, for dCuNi ≈ 3.8-24 nm, 
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Fig.3 Non-monotonous Tc (dF) dependence for Nb/Cu41Ni59 bilayers with the 

Nb layer thickness, dNb≈ 6.2 nm, dNb ≈ 7.8 nm, and dNb ≈ 14.1 nm. Solid 

lines are fits using the theory [4]. 

the superconducting transition temperature vanishes (at 

least Tc <40 mK, which is the lowest temperature measured). 

For dCuNi > 24 nm the transition into a superconducting state 

is observed again. Finally, Tc increases to a little bit above 

1 K showing an outstanding reentrant superconductivity 

behavior with evidence for a second disappearance of the 

superconducting state at dCuNi > 37.4 nm. Altogether, the 

Tc(dCuNi) curves given in Fig. 3 represent all types of non-

monotonic Tc(dCuNi) behaviors predicted by the theory [4]. 

This phenomenon of the reentrant superconductivity in the 

S/F bilayer has been presented in our recent publications 

[9,10].  

 

IV. SIMULATION AND DISCUSSION 

To describe the experimental data we used the calculation 

procedure described in [9,10]. The results for 

superconducting critical temperature Tc calculations for 

parallel and anti-parallel directions of ferromagnetic layers 

magnetizations for a core-structure Cu41Ni59 /Nb/ Cu41Ni59  

with superconducting layer thicknesses dNb = 12.5nm, 14 nm 

are presented in Fig. 4. 

One can see that a maximal spin-switch effect value ∆Tc 

of the order of 1-2 K is achievable only in a very strict 

region of superconductor and ferromagnetic layer 

thicknesses. Otherwise one can expect only negligible value 

of ∆Tc. 

V. CONCLUSION 

It was found from the calculations, based on our 

experimental parameters that maximal spin-switch effect 

value with the order of magnitude 1-2 K is achievable only 

for the strict range of superconductor and ferromagnetic 

layers thicknesses. This range of controlled thicknesses is 



International Conference on Nanotechnologies and Biomedical Engineering, Chişinău, Republic of Moldova, 7-8th of July, 2011 

 

 

         174 

accessible using advanced vacuum technology [8-10] 

developed by us for preparation of the F/S/F-core structure 

for a superconducting spin-switch construction. 

 

 
 

Fig.4. Tc(dF) curves of a superconducting F/S/F spin-valve core structure 

with dS = dNb= 12.5 nm (a), dS = dNb= 14 nm (b) calculated using the 

following set of parameters for (a) and (b) respectively: Tc0,Nb(dCuNi = 0 nm) 
= 7.7, 8.1 K; in all cases ξS = 6.6 nm; NFvF/NSvS = 0.22; TF = 0.6; 

lF/ξF0 = 1.1; ξF0 = 10.5 nm. 
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