Superconducting Spin Switch Based on Superconductor-Ferromagnet Nanostructures for Spintronics

Jan KEHRLE^a, Vladimir ZDRAVKOV^{a,b}, Claus MUELLER^a, Guenter OBERMEIER^a, Matthias SCHRECK^a,

Stefan GSELL^a, Siegfried HORN^a, Reinhard TIDECKS^a, Roman MORARI^{b,c}, Andrei PREPELITSA^b, Evgenii ANTROPOV^b, Alexei SOCROVISCIUC^b, Eberhard NOLD^c, Lenar TAGIROV^{a,d}, Anatoli SIDORENKO^{b,c}

> University of Augsburg, D-86135 Augsburg, Germany Institute of Electronic Engineering and Nanotechnologies "D. Ghiţu" ASM Kishinev, MD2028, Moldova Institute of Nanotechnology, D-76021 Karlsruhe, Germany Solid State Physics Department, Kazan State University, Kazan, 420008, Russia; anatoli.sidorenko@kit.edu

Abstract – Very rapid developing area, spintronics, needs new devices, based on new physical principles. One of such devices – a superconducting spin-switch, consists of ferromagnetic and superconducting layers, and is based on a new phenomenon – reentrant superconductivity. The tuning of the superconducting and ferromagnetic layers thickness is investigated to optimize superconducting spin-switch effect for Nb/Cu₄₁Ni₅₉ based nanoscale layered systems.

Index Terms - spin-switch, superconductivity, proximity effect, spintronics, nanotechnology

I. INTRODUCTION

Fulde, Ferrell [1], Larkin and Ovchinnikov [2] predicted that an unconventional, nonuniform superconducting pairing (FFLO) with a non-zero momentum of a pair may occur in a ferromagnetic background, i.e. in the presence of an exchange field. In conventional (s-wave) superconductors such state can only be observed in a very small range of parameters and has not been realized up to now experimentally. However, Buzdin et al. [3] predicted FFLOlike pairing in S/F layered structures, where the pair amplitude in the F-material establishes due to penetration of the singlet electron pairs from the superconductor through the S/F interface. More advanced analysis was worked out by Tagirov [4] and Fominov et al. [5]. The most spectacular prediction of these theories is that not only $T_{\rm c}$ oscillations but also complete suppression of superconductivity may occur in a certain range of thicknesses of the F-layer followed by its unusual re-entrance with increasing of the F-layer thickness. Superconducting spin-switch based on proximity effect in Ferromagnet – Superconductor – Ferromagnet (F/S/F) layered system was investigated then theoretically in [6,7] using hypothetical materials and their thicknesses. The thicknesses tuning of the superconducting and ferromagnetic layers in SF -structures is the goal of the present work, to investigate and optimize superconducting spin-switch effect for Nb/Cu₄₁Ni₅₉ based nanoscale layered system.

II. FILMS DEPOSITION AND CHARACTERIZATION

We developed a special advanced technological process of superconducting layers preparation [8] for reliable fabrication of S/F structures with the layer thickness scale of several nanometers. The S and F layers were deposited by magnetron sputtering on commercial (111) silicon substrates at room temperature. The base pressure in the "Leybold Z400" vacuum system was about 2×10^{-6} mbar. Pure argon (99.999%, "Messer Griesheim") at a pressure of 8×10^{-3} mbar was used as sputter gas. A silicon buffer layer was deposited using RF magnetron. It produced a clean interface for the subsequently deposited niobium layer. To obtain flat and high-quality Nb layers with thickness in the range of 5-15 nm, the rotation of the target around the symmetry axis of the vacuum chamber was realized. A dc-motor drive moved the full-power operating magnetron along the silicone substrate of the $80 \times 7 \text{ mm}^2$ size during the deposition. Thus, the surface was homogeneously sprayed with the sputtered material. The effective growth rate of the Nb film in this case was about 1.3 nm/sec. The deposition rate for a fixed, non-moving target would be about 4-5 nm/sec.

Fig.1. Sketch of the layers stack in the deposited S/F-specimen.

The next step of the procedure was deposition of a wedgeshaped ferromagnetic layer utilizing the intrinsic spatial gradient of the deposition rate of the sputtering material. The $Cu_{40}Ni_{60}$ target was RF sputtered with a rate of 3-4 nm/sec, resulting in practically the same composition ($Cu_{41}Ni_{59}$) of the alloy in the film. To prevent a destructive influence by the atmospheric conditions, the last deposited layers were coated by a silicon cap of about 5-10 nm thickness (see a sketch of the prepared samples in Fig. 1).

Samples of a width of about 2.5 mm were cut perpendicular to the wedge to obtain a set of S/F bilayer strips with varying $Cu_{41}Ni_{59}$ layer thickness d_F , for $T_c(d_F)$ measurements. Aluminum wires of 50 µm in diameter were bonded to the strips by ultrasonic bonder for four-probe resistance measurements.

Fig. 2. Scanning Auger electron spectroscopy (AES) of a Si(substrate)/Si(buffer)/Nb/Cu_{1-x}Ni_x/Si(cap) sample, d_{Nb} =7.5 nm and d_{CuNi} =32.9 nm (thickness according to the RBS data).

To study the quality of interfaces between the layers we performed Auger electron spectroscopy (AES) measurements of specimens. A defocused Xe-ion beam erodes a crater into the film with inclination angles of the scarps of only a few degrees or below. An electron beam then scans the shallow crater. The emitted Auger electrons reveal the lateral distribution of elements. As a result, one reconstructs the elemental concentration as a function of the sample depth profile. The AES data for the Nb/Cu_{1-x}Ni_x specimen are shown in Fig. 2. There are about 59 at.% Ni (in agreement with the RBS data) and 39.0 at.% Cu in the Cu₁₋ _xNi_x film. There is a small concentration of O, C and N impurities at the Nb/Cu_{1-x}Ni_x interface as a result of physical absorption of gases from the residual atmosphere of the vacuum chamber. The Cu_{1-x}Ni_x/Si(cap) interface is free of contaminations.

The samples for the $T_c(d_s)$ measurements were prepared with the same procedure, but with a Cu₄₁Ni₅₉ film of constant thickness on the top of a wedge-shaped Nb layer. In addition, single flat Nb films and single CuNi-wedge shaped layers were prepared in a similar way for materials characterization.

III. SUPERCONDUCTING PROPERTIES OF NB/CU₄₁NI₅₉ BILAYERS

Fig. 3 demonstrates the dependence of the superconducting transition temperature for SF samples on the thickness of the Cu₄₁Ni₅₉ layer. For specimens with $d_{\rm Nb} \approx 14.1$ nm the transition temperature $T_{\rm c}$ reveals a non-monotonic behavior with a very shallow minimum at about $d_{\rm CuNi} \approx 6.8$ nm, it is just the qualitative behavior. The

transition temperature T_c reveals an expressed nonmonotonic behavior with a deep minimum at d_{CuNi} about 7.9 nm. For the series of specimens with $d_{\text{Nb}} \approx 6.2$ nm the transition temperature T_c decreases sharply for increasing ferromagnetic Cu₄₁Ni₅₉ layer thickness, until $d_{\text{CuNi}} \approx 3.8$ nm. Then, for $d_{\text{CuNi}} \approx 3.8$ -24 nm,

Fig.3 Non-monotonous $T_c(d_F)$ dependence for Nb/Cu₄₁Ni₅₉ bilayers with the Nb layer thickness, $d_{Nb} \approx 6.2 \text{ nm}$, $d_{Nb} \approx 7.8 \text{ nm}$, and $d_{Nb} \approx 14.1 \text{ nm}$. Solid lines are fits using the theory [4].

the superconducting transition temperature vanishes (at least $T_c < 40$ mK, which is the lowest temperature measured). For $d_{\text{CuNi}} > 24$ nm the transition into a superconducting state is observed again. Finally, T_c increases to a little bit above 1 K showing an outstanding reentrant superconductivity behavior with evidence for a second disappearance of the superconducting state at $d_{\text{CuNi}} > 37.4$ nm. Altogether, the $T_c(d_{\text{CuNi}})$ curves given in Fig. 3 represent all types of nonmonotonic $T_c(d_{\text{CuNi}})$ behaviors predicted by the theory [4]. This phenomenon of the reentrant superconductivity in the S/F bilayer has been presented in our recent publications [9,10].

IV. SIMULATION AND DISCUSSION

To describe the experimental data we used the calculation procedure described in [9,10]. The results for superconducting critical temperature T_c calculations for parallel and anti-parallel directions of ferromagnetic layers magnetizations for a core-structure Cu₄₁Ni₅₉ /Nb/ Cu₄₁Ni₅₉ with superconducting layer thicknesses $d_{Nb} = 12.5$ nm, 14 nm are presented in Fig. 4.

One can see that a maximal spin-switch effect value ΔT_c of the order of 1-2 K is achievable only in a very strict region of superconductor and ferromagnetic layer thicknesses. Otherwise one can expect only negligible value of ΔT_c .

V. CONCLUSION

It was found from the calculations, based on our experimental parameters that maximal spin-switch effect value with the order of magnitude 1-2 K is achievable only for the strict range of superconductor and ferromagnetic layers thicknesses. This range of controlled thicknesses is

accessible using advanced vacuum technology [8-10] developed by us for preparation of the F/S/F-core structure for a superconducting spin-switch construction.

Fig.4. $T_c(d_F)$ curves of a superconducting F/S/F spin-valve core structure with $d_S = d_{Nb}= 12.5$ nm (a), $d_S = d_{Nb}= 14$ nm (b) calculated using the following set of parameters for (a) and (b) respectively: $T_{c0,Nb}(d_{CuNi} = 0 \text{ nm})$ = 7.7, 8.1 K; in all cases $\xi_S = 6.6$ nm; $N_F v_F / N_S v_S = 0.22$; $T_F = 0.6$; $l_F / \xi_{F0} = 1.1$; $\xi_{F0} = 10.5$ nm.

ACKNOWLEDGEMENTS

The authors are thankful to A.F. Andreev, A. Buzdin, R. Gross, H. Hahn, A. Zaikin, M. Kupriyanov and V. Ryazanov for stimulating and fruitful discussions. The work was partially supported by A.v. Humboldt grant -Institutspartnerschaften "Nonuniform superconductivity in layered SF-nanostructures Superconductor/Ferromagnet" (R.M. and An.S.), by DFG under the grant "Study of the Superconducting Proximity Effect Spin-Valve Phenomenon in Superconductor/Ferromagnet Nanolayered Structures" (GZ: HO 955/6-1, UA participants), and the project of the Moldavian State Program "Investigarea supracondubilității neomogene în nanostructucturi stratificate supraconductor-feromagnet și elaborarea valvei de spin în baza lor" (R.M., A.P., E.A., A.S. and An.S.).

REFERENCES

- [1] P. Fulde and R. Ferrell, Phys. Rev. 135, A550 (1964).
- [2] A.I. Larkin and Yu.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].
- [3] A.I. Buzdin and M.Yu. Kupriyanov, Pis'ma v ZhETF 52, 1089 (1990) [JETP Lett. 52, 487 (1990)].
- [4] L.R. Tagirov, Physica C 307, 145 (1998).
- [5] Ya.V. Fominov, N.M. Chtchelkatchev, and A.A. Golubov, Phys. Rev. B 66, 014507 (2002).
- [6] L.R. Tagirov. Phys. Rev. Lett. 83, 2058 (1999).
- [7] A.I. Buzdin, A.V. Vedyayev, and N.V. Ryzhanova, Europhys. Lett. 48, 686 (1999).
- [8] A.S. Sidorenko, V.I. Zdravkov. R. Morari Device for preparation of superconducting layers, Patent of RM 175 (134) Y din 2010, Cl.Int. H01 L 21/00.
- [9] V.I. Zdravkov, J. Kehrle, G. Obermeier, S. Gsell, M. Schreck, C. Müller, H.-A. Krug von Nidda, J. Lindner, J. Moosburger-Will, E. Nold, R. Moari, V.V. Ryazanov, A.S. Sidorenko, S. Horn, R. Tidecks, and L.R. Tagirov, Phys. Rev. B 82, 054517 (2010).
- [10] A. S. Sidorenko, V. I. Zdravkov, J. Kehrle, R. Morari, E. Antropov, G. Obermeier, S. Gsell, M. Schreck, C. Müller, V. V. Ryazanov, S. Horn, R. Tidecks, and L. R. Tagirov. *in*: Nanoscale Phenomena -Fundamentals and Applications. H. Hahn, A. Sidorenko, and I. Tiginyanu, Eds. Springer-Verlag, Berlin-Heidelberg, 2009, p.3-11.