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I. INTRODUCTION
**

 

Since the mid 1980s, there has been an extensive interest 

in the effects of an applied electric field normal to the layers 

on the optical properties of semiconductor quantum wells 

(QWs) and superlattices (SLs) [2]. The electric field strength 

perpendicular to the layer surface gives rise to Rashba spin-

orbit coupling (RSOC). The spin-orbit effects are discussed 

in a special monograph [3] and papers [2, 4-9]. In the Ref. 

[10-12] the energy spectrum of 2D magnetoexcitons were 

studied supposing that the spin polarizations of electrons and 

holes take place and the spin-orbit coupling was neglected. 

In reality, as was shown in Ref. [13], the RSOC leads to 

breaking of the pure spin polarizations and the new spinor-

type states are characterized by different numbers of Landau 

levels for different spin projections. These numbers for 

electrons differ by 1, whereas for holes differ by 3. Spin 

polarized states under the influence of the RSOC are 

transformed into mixed spinor components. The two lowest 

electron states and four lowest hole states were used to 

construct eight lowest 2D magnetoexciton states [13]. The 

direct Coulomb electron-hole interaction gives rise to the 

binding energies and ionization potentials of the 

magnetoexciton states. They were calculated in Ref. [10-12]. 

Below we will use these results to determine the exchange 

electron-hole interaction. 

II. EXCHANGE ELECTRON-HOLE INTERACTION 

The electron-hole Coulomb interaction is calculated below 

taking into account the influence of the RSOC in the frame 

of conduction and valence bands. The corresponding Bloch 

wave functions including their periodic parts are 
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The orthogonality each other of the conduction and 

valence electron Bloch wave functions is attained due to 

their orthogonal periodic parts, whereas the orthogonality of 

the wave functions belonging to the same bands and having 

the same periodic parts is reached due to different numbers 

of the Landau quantization wave functions 
, ( , )c n y p  and 

, ( , )v m y p . The conduction and valence electrons have the 

same electric charge — | |e  and their dimensionless 

variables have the same structure 
y

l
pl  and 

y

l
ql . The 

last variable looks as 
y

l
ql  in the case of the hole wave 

function 
, ( , )h n y q  due to the positive value of the hole 

charge | |e . 

We will consider eight combinations of the electron-hole 

pairs taking into account two spin-splitted electron Landau 

levels 1,e R  and 2,e R  and four spin-splitted hole Landau 

levels , jh R  with 1,2,3,4j  . These combinations will be 

denoted by 
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( , ; , ); 1, ,8; 1,2; 1,2,3,4.s i jf e R h R s i j        (2) 

The wave functions of eight magnetoexciton states with 

electron states 
1R  and 

2R  and with four hole states 
1R , 

2R , 

3R  and 
4R  can be expressed through the corresponding 

creation and annihilation operators. For example, in the 

compositions 
sf  represented by the formulas (2), we have 
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Side by side with the direct Coulomb interaction it is 

necessary to study the exchange Coulomb e-h interaction. In 

the case of Wannier-Mott excitons in the absence of external 

magnetic field and RSOC it gives rise to the singlet-triplet 

splitting of the exciton levels. It is due to the contact or 

short-range part of the exchange e-h interaction and is 

revealed very well experimentally in the case of ortho- and 

para-excitons in Cu2O crystal. The long-range part of this 

interaction determines the longitudinal-transverse splitting of 

the three-fold degenerated dipole-active exciton levels in 

cubic crystals as well as the polariton gap [14]. These 

questions were not studied at all in the case of 2D 

magnetoexcitons and more so in the presence of the RSOC. 

They will be discussed below. The exchange e-h interaction 

has its origin in the exchange Coulomb interaction between 

the conduction electron and valence electron. At first we will 

consider the conduction electron in the state 
1R  and the 

valence electron in the state 
1R  in the frame of Landau 

quantization and RSOC. 

The corresponding Hamiltonian is 

1 1 1 1
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  (6) 

with electron and hole SOC parameters ,e z ceE l    

3

h z chE l    correspondingly. 

Here the exchange charge density of electron was 

introduced 

 , , , , , , , ,

1
( ; , ; , ) ( ) ( ) ( ) .

2
c S p v P X p s v P Y p sr c p v p s U r U r iU r

   W (7) 

It depends on the product of two periodic parts of the 

Bloch functions of electron in conduction and valence bands. 

We have introduced the variables 
1  and 

2 , changing 

inside the lattice cell with the volume 3

0 lv a , where 
la  is 

the lattice period, as well as two continuous variables 1R  and 

2 1R R R   enumerating the lattice nodes. Four integrations 

are effectuated separately, two on the volume 
0v  of the 

lattice cell and two integrations on 1R  and R  on the surface 

of the 2D layer. In difference on the case of the direct 

Coulomb interaction, the integration on the lattice cell 

volume 
0v  of the exchange charge densities without 

participation of the functions describing the Coulomb 

interaction vanish due to the orthogonality of the periodic 

parts of the Bloch functions belonging to different bands 

0 0

*

1 1 2 2
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(8) 

It means that in the frame of the exchange Coulomb 

interaction two electrons do not behave as a point charges, 

but rather as two inter-band dipoles situated on different 

nodes ( 0)R   of the lattice. To demonstrate this picture the 

Coulomb interaction potential will be represented in the 

form 
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(9) 

This representation permits to separate the contact or 

short-range interaction, when both electrons are in the same 

unit lattice cell ( 0)R  , and the long-range part, where R  

differs from zero ( 0)R  . 

The inter-band dipole moments appear as follows 
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The integrations on the large-scale variable 1R  involve 

different combinations of the Landau quantization functions 

1( , )n yR p  and 
1( , )n y yR R p   in the following 

combinations 
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The exchange e-h interaction is represented below as a 

sum of contact and long-range parts 
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The contact part equals to 
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whereas the long-range part contains a supplementary 
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summation on the large scale variable R  
2

1 1

0

( , ; , , ) xisRl

l r

Rx

a
V R R p q s e

L




   

    
3 5

( , ) ( , ) 3 ( , ) ( , )cv cv cv cvd p p s d q s q d p p s R d q s q R

R R

        
  
 
 

 (14) 

2 2 2 2

0 3 0,0;3,3 0 1 1,1;0,0

0 0 3 1 0,1;3,0 1 3 0 0 1,0;0,3

| | | | ( ) | | | | ( )

( ) ( ) .

y y

y y

a c G R d b G R

a d c b G R b c d a G R   

 

  

 

Here the summation on the variable R  can be substituted 

by integration as follows 2

0

l x y
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a dR dR
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after the normal ordering of the hole operators will give rise 

to the Hamiltonian of the exchange e-h interaction 

concerning the states 
1,c R  and 

1,v R . It is 
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On the ways from the initial expression (4) to the final form 

(16) correspondingly we have separated the quadratic free 

electron Hamiltonian 

 1 1 1 1( , , ; , , ; , , ; , , )c v

p

F c R p v R q c R p s v R q s    


1 1

†

1 1 1 1 , ,( , , ; , , ; , , ; , , ) .c v R p R pF c R p v R q v R p s c R q s a a   (17) 

It describes the influence on the conduction electron of the 

valence electrons, which together with the electrons of the 

inner atomic shells create the effective periodic potential of 

the lattice. The terms (17) compensate the difference 

between the periodic potential created by the inner atomic 

shells and the real effective periodic potential created by all 

electrons including the valence electrons [14]. The effective 

periodic potential determines the electron wave functions (1) 

used in our calculations and at the same time depends in a 

self-conjugated way on their forms, it means on the presence 

of a strong perpendicular magnetic field as well as on the 

RSOC. Above we have calculated the exchange interaction 

matrix element for the first combination 
1f  of the electron 

wave functions , ,ic R p  and , ,jv R q  with 1,2i   and 

1,2j  . For another three combinations we have obtained 

the formulas similar to the expressions (13) and (14). The 

only differences concern the square brackets, where must be 

written correspondingly 
2

0 0,0;0,0 2 1 2

2
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The Hamiltonian describing the exchange electron-hole 

interaction has the form 
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 (19) 

The average values of this Hamiltonian were calculated 

with the exciton wave functions (3). They determine the 

shifts of the magnetoexciton energy levels due to the 

exchange e-h interactions. They are equal to 

2( )

,

1
( , , ; , , ; , , ; , , ) ,

1,2; 1,2,3,4.

y xik p q k l

c v i j j x i x

p q
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N
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III. CONCLUSION 

The spinor-type wave functions of the 2D electrons and 

holes in the presence of the RSOC were used to calculate the 

exchange electron-hole interaction in the frame of 2D 

magnetoexcitons. Two lowest Landau levels for electrons 

1,e R , 2,e R  and four lowest Landau levels for holes 

1,h R , 2,h R , 3,h R , and 4,h R  were combined in such 

a way so as to form eight electron-hole states corresponding 

to the combinations: 
1 1 1( , ; , );f e R h R  

2 1 2( , ; , );f e R h R  

3 2 1( , ; , );f e R h R  
4 2 2( , ; , );f e R h R  

5 1 3( , ; , );f e R h R  

6 1 4( , ; , );f e R h R  
7 2 3( , ; , );f e R h R  

8 2 4( , ; , ).f e R h R  The 

exchange e-h interaction consists from the contact and long-

range terms. The contact interaction depends only on the 

integration on the elementary lattice cell, whereas the long-

range part contains a supplementary summation on the large 

scale variable representing the distance between two lattice 

nodes in the neighborhood of which the electron and hole are 

localized. In the frame of exchange Coulomb interaction 

conduction electron and valence electron do not behave as a 

point charges, but rather as two inter-band dipoles situated 

on different nodes of the lattice. 

REFERENCES 

[1] E.I. Rashba, Sov. Phys. Fiz. Tverd. Tela (Leningrad), 

vol. 2, p. 1224, 1960. 

[2] Bang-fen Zhu and Yia-Chung Chang, Phys. Rev. B, vol. 

50, p. 11932, 1994. 

[3] Roland Winkler, Spin-Orbit Coupling Effects in Two-

Dimensional Electron and Hole Systems, Springer Tracts 

in Modern Physiscs: Springer, Berlin, Heidelberg, vol. 

191, 228 pages, 2003. 

[4] Ralph van Gelderen and C. Morais Smith, Phys. Rev. B, 

vol. 81, p. 125435, 1994. 

[5] S.A. Brazovskii, Zh. Eksp. Teor. Fiz., vol. 68, p. 175, 

1975; Sov. Phys. JETP, vol. 41, p. 85, 1975. 

[6] R. Winkler, M. Merkler, T. Darnhofer, and U. Rossler, 

Phys. Rev. B, vol. 53, p. 10858, 1996. 

[7] U. Ekenberg and M. Altarelli, Phys. Rev. B, vol. 32, 

p. 3712, 1985. 

[8] R. Winkler, Phys. Rev. B, vol. 62, p. 4245, 2000. 

[9] R. Winkler, H. Noh, E. Tutuc, and M. Shayegan, Phys. 

Rev. B, vol. 65, p. 155303, 2002. 

[10] S.A. Moskalenko, M.A. Liberman, P.I. Khadzhi, E.V. 

Dumanov, Ig.V. Podlesny, and V.V. Botan, Solid State 

Commun., vol. 140, p. 236, 2006. 

[11] S.A. Moskalenko, M.A. Liberman, P.I. Khadzhi, E.V. 

Dumanov, Ig.V. Podlesny, and V.V. Boţan, Physica E, 

vol. 39, p. 137, 2007. 

[12] S.A. Moskalenko, M.A. Liberman, and I.V. Podlesny, 

Phys. Rev. B, vol. 79, p. 125425, 2009. 

[13] T. Hakioglu, M.A. Liberman, S.A. Moskalenko, and 

I.V. Podlesny, Phys. Rev. B, (submitted). 

[14] S.A. Moskalenko, Introduction in the theory of high 

density excitons, Chisinau, Shtiintsa, 304 pages, 1983.


