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INTRODUCTION 

  

Performance modelling is concerned with 

the description, analysis and optimization of the 
dynamic behavior of computer systems. Several 

methods for verification and performance modeling 

of computer systems are based on different formal 

models [2]. Among the formalisms that are used, 
Petri nets (PN) are the most popular. A number of 

different classes of PN have been proposed [2, 8]. 

Timed Hybrid Petri nets (HPN) are PN based 
models in which some places may hold a discrete 

number of tokens and places a continuous quantity 

represented by a real number  [1, 3].  

To make design issues and analysis 
procedures more transparent, we tried to deviate as 

little as possible from the concepts and tenets of 

HPN. Thus, we created our extension building on 

relevant previous works: HPN, Generalized 

Stochastic Petri Nets [2] and Differential Petri Net 

(DPN) [4]. The result is a new type of HPN, which 

we call Generalized DPN (GDPN), and is able to 

represent the behaviour of continuous systems and 
discrete systems in a common model. The novel 

features of GDPN are accepted the negative-

continuous place capacity, negative real values for 

continuous place marking and negative token-
dependent arc cardinalities, that permit to generalize 

the concept of HPN and DPN. The GDPN is formed 

by three kinds of discrete and continuous objects: 
places, transitions and arcs. Places represent some 

kind of resources, transitions denote actions or 

events that happen in the system and arcs link the 
first two kinds of objects together, implementing the 

logic of the GDPN; they assign actions to resources, 

and vice versa.  

To our knowledge existing methods do not 
support marked-controlled reconfiguration of 

systems. The purpose of this paper is to introduce 

descriptive self-rewriting GDPN that can 
dynamically modify their own structures by 

rewriting rules transitions some of their components 

thus supporting structural dynamic changes within 
modeled systems. 

  

1.  LABELED GENERALIZED DPN 
 

Various extensions have been made to the 

framework of timed HPN since its in [ ].  In this 
section, we present a variant extended HPN, called 

labeled GDPN, which is is derived  with customary 

notation from [3, 4]. Let L  be a set of labels 

TP LLL  ,  TP LL . Each place 
ip  labeled 

Pi Lpl )(  has a local state and transition tj has 

action labeled as 
Tj Ltl )( . 

Definition 1: A labeled GDPN is a 11-tuple  
H =<P, T, Pre, Post, Test, Inh, Kp , Kb, G, Pri, l >, 

where:  P is the finite set of places partitioned into a 

set of discrete places PD, and a set of continuous 

places PC , P=PD PC , PD  PC = . The discrete 

places may contain a natural number of tokens, 
while the marking  of a continuous place is a real 

number (fluid level). In the graphical represen-

tation, a discrete place is drawn as a single circle 

while a continuous place is drawn with two 
concentric circles; 

  T is a finite set of transitions, that can be 

partitioned into a set TD of discrete transitions and a 
set TC of continuous transitions, T =TD TC , TD 

 TC =  . A discrete transition  tjTD is drawn 

as a black bar and continuous transition tiTC  is 

drawn as a rectangle;  

  Pre, Test and )(: PBagTPInh   respectively 

is a forward flow, test and inhibition functions. 

)(PBag  is a discrete or continuous multiset over 

P. The backward flow function in the multisets of P  

is a )(: PBagPTPost  , where define the set of 

arcs A and it describes the marking-dependent 

cardinality of arcs connecting transitions with 
places and vice-versa. The A is partitioned into 

subsets: Ad, As, Ah, Ac and At. The subset Ad and 

As contains the discrete normal arcs and 
continuous   set of arcs which can be seen as a 

function: Ad:(( DD TP  ) (
DD PT  ))

|| PIN  IZ  

and the As:(( DC TP  ) { CD PT  ))
||PIR IR ,  

respecively  . The arcs of Ad and As, are drawn as 
single arrows. The subset of discrete inhibitory 
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arcs is Ah: ( TPD  )
|| PIN 

 IN  or continuous 

inhibitory arcs Ah: ( TPC  )
||PIR IR . These 

arcs are drawn with a small circle at the end. The 

subset Ac defines the continuous flow arcs Ac: 

(( CC TP  )  ( CC PT  ))
||PIR IR , and these 

arcs are drawn as double arrows to suggest a pipe. 

A test input arc At is directed from a place of any 
kind to a transition of any kind, that At: 

( TPD  )
|| PIN 

 IN  or ( TPC  )
||PIR IR  

and are drawn as dotted single arrows. It does not 
consume the content of the source place. The arc of 

net is drawn if the cardinality is not identically zero 

and it is labeled next to the arc with a default value 

being 1. The IZ ,
IN  and IR are the set of discrete 

integer, natural and real numbers, respectively; 

  
 INPK Dp :  is the function-capacity of discrete 

places and for each Di Pp   this is represented by 

the minimum 
min

ipK  and maximum capacity
max

ipK , 

 minmin0
ipip

KK  which can contain an 

integer number of tokens, respectively. By default 

0min 
ipK  and 

max

ipK being infinite value;  

 IRPK Cb :  is the function-capacity of 

continuous places and  for each Ci Pp  describes 

the fluid lower bound min
ix  and upper bounds max

ix  

of fluid on each continuous place, that 
min

ix  max

ix . This max
ix  by default it is 

 , and bound has no effect when it is set to 
infinity. Each continuous place has an implicit 

lower bound at level is 0;  

  )(: PBagTG {True, False} is the guard 

function defined for each transition. For tT a guard 

function g(t, M) will be evaluated in each marking 
M, and if it evaluates to true, the transition may be 

enabled, otherwise t is disabled (by default is true);  

  Pri: TD  IN  defines the priority functions for the 

firing of each transition. By default it is 1. The 

enabling of a transition with higher priority disables 

all the lower priority transitions;  

  LPTl : , is a labeling function that assigns 

a label to a nodes (transitions and places) of net. In 

this way that maps the node name of net into 

action name or in condition name that 

 )()( kj tltl  but kj tt   or  )()( ni plpl  

but ni pp  , respectively.                                        

The structure of a GDPN is static. 

Assuming that the behaviour of the system can be 

described in terms of the current system state and its 

possible changes, the dynamics of a net structure is 
specified by defining its marking and marking 

evolution rule. 

Definition 2: A timed marked labeled GDPN is a 

pair  NH = <N, M0 >, where N = < H ,  , W, V > 

is a labeled GDPN structure (see Definition 1) with 

the respectively attributes of timed transitions and 
M0 is the initial marking of the net such as:   

  The current marking (state) value of a net 

depends on the kind of place, and it is described by 
a pair of vector-columns M = (m, x), where the m: 

PD  IN  and x: PC IR  are marking functions of 

respectively type of places. The vector-column 

),0,(
Diiii

Ppmpm m  with ii pm  is the 

number )(
ii

pm m of tokens in discrete place, and 

it is represented by the black dots. The 

),,( min

Ckkkkk Pbxxbxx  is vector-

column, where kkbx  is the fluid level )(
kk

bx x  

in continuous place kb , and it is the real number, 

that is allowed to take also negative real value.  The 
initial marking of net is M0 = (m0, x0). The vector m0  

gives the initial marking of discrete places and the 

vector x0 gives the initial marking of fluid places;  

  The set of discrete transitions TD is partitioned 

into TTTD  0 ,  TT0  so that: T   is a set 

of timed discrete transitions and T0  is a set of 

immediate discrete transitions. The 

Pri(T0)>Pri(T ). A timed discrete transition 

t T is drawn as a black rectangle and has a firing 

delay 
 IRPBagT )(:


  is associated to it, and 

this is can be marking dependent. The


IR is the set 

of nonnegative real numbers.  

Let T(M)  denote the set of enabled transitions in 

current marking  M=(m, x).  Thus, a timed transi-

tions )M(Tt   is enabled in current tangible 

marking M,  it fires after delay ),( Mt . By default 

it is 1.  Note once again, we do allow the firing 

delay to be dependent on fluid levels; 

   
 IRPBagTW )(: 0

 is the weight  function  of 

immediate discrete transitions tjT0, and this type 

of transition is drawn with a black thin bar and has 

a zero constant firing time. If several enabled 

immediate transitions )(0 TTt j  are scheduled to 

fire at the same time in vanishing marking M, the 

transitions tk with the respective weights wk  fire 

with probability: 





)(0

),(/),(),(
MTt

jkk

j

MtwMtwMtq ; 
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   IRPBagTV
C

 )(: is the marking dependent 

fluid rate function of timed continuous 

transitions cT . These rates appear as labels next to 

the continuous timed transitions. By default it is 1. If 

ci Tt   is enabled in tangible marking M it fires with 

rate Vi(M), that continuously change the fluid level 

of continuous place PC.                                            

 

 
Figure 1.  All the primitive of the timed GDPN.   

 
Figure 1 summarizes the graphical 

representation of all the GDPN primitives. 

 

 
Figure 2.  All the possible ways of placing arcs in a 

timed GDPN net. 

 

Figure 2 summarize the all possible ways of 

placing arcs in a GDPN net  for   discrete transition 
and continuous transition with the discrete places 

and continuous places, respectively. 

Upon firing, the discrete (continuous) tran-

sition removes a specified number (quantity)  of 
tokens (fluid) for each discrete (continuous) input 

place, and deposits a specified number (quantity) of 

tokens (fluid) for each discrete (continuous) output 
place. The fluid levels of continuous places can 

change the enabling/disabling of discrete and 

continuous transitions. 
 The role of the previous set and functions 

will be clarified by providing the enabling and 

firing rules. Let us denote by mi the i-th component 

of the vector m, i.e., the number of tokens in 
discrete place pi when the marking is m, (and xk 

denote the k-th component of the vector x, i.e., the 

fluid level in continuous place pk ). 

Enabling and Firing of Transitions. Let 

T(M) the set o enabled transitions in current 
marking M. We say that a discrete transition 

)(MTt Dj  is enabled in current marking M if the 

following enabling condition )( jd tec is verified: 

&)),(Pr(()(
jii

jtip
jd

tpemtec 





k
tp

m
jk

((


&)),( jk tpInh &)),(((
* jll

jtlp

tpTestm 


          

&)),()((( jnnp
tp

tpPostmK
jn




&)),(Pr(( jii
tb

tbex
ji







k
tb

x
jk

((


&)),( jk tbInh  

&)),(((
* jll
tb

tbTestx
jl




&),( Mtg j                          

)),()((( jnnb
tb

txPostxK
jn




.           (2.1) 

The discrete transition )(MTt Dj  fire if 

no other discrete transition )(MTt Dk   with higher 

priority has enabled.  
Also, we say that a continuous transition   

)(MTu Cj  is enabled and continuously fire in 

current marking M if the enabling condition 

)( jc uec  is verified: 

&)0(()( 


i
ub

jc xuec
ji




k
up

m
jk

((


&)),( jk upInh &)),(((
* jll
up

upTestm
jl




 




k
ub

x
jk

((


&)),( jk ubInh ),( Mtg j &  

&)),(((
* jll
ub

ubTestx
jl




)),()((( jnjnb
ub

uxPostVxK
jn




,     (2.2)        
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and no other continuous transition with higher 

priority has concession.  

The current marking M evolves in time  . 

If an immediate discrete transition has concession in 
current marking M=(m, x), it is enabled and the 

marking  is vanishing. Otherwise, the marking is 

tangible and any timed discrete transition with 
concession is enabled in it. An immediate discrete 

transition 
jt  enabled in current marking M=(m, x) 

yields a new vanishing marking ),( xmM . We 

can write (m, x) [tj > ),( xm ). Thus, the new 

discrete marking is: 

),(Pr),()()(
iiii

pepPostpp  mm
.
 

If the M=(m, x) is tangible, the fluid could 
continuously flow through the flow arcs Ac of 

enabled continuous transitions into or out of fluid 

places. As a consequence of this, a continuous 

transition tc is enabled at M iff for every ,cc tp   

x(pc)>0, and its enabling degree  enab(tc , M) is [1]: 

enab(tc ,M )=
tpc


min {x(pc)/Pre(pc , tc)}. 

In the GDPN the current dynamic 

balance )(M
k

  change the fluid level of continuous 

place
Ck

Pp    in current tangible marking M is 

given by the following relation:  

)()()( MMM
kkk

   , with  

 
),()(V)(

kj
McTjt

jk
btPreMM 



  and  

 
),()(V)(

kl
McTlt

kk
btPostMM 



 , 

where for any 
Cl Tt   the )(M

k

 is an input fluid 

rate of  continuous place 
Ck

Pp  , )(M
k

  is an 

output fluid rate of this place, and )(MT
c

 is a set of 

continuous transition teach which is enabled in M. 

Thus, during the time 0 the fluid 

level )(
kk

bx x  continuously change an con-

formity with the relation:   )(Mxx
kkk

. 

We allow the firing rates and the enabling 

functions of the timed discrete transitions, the firing 
speeds and enabling functions of the timed 

continuous transitions, and arc cardinalities to be 

dependent on the current state of the GDPN, as 
defined by the marking M . 

Let the dynamic balances )(Mi  which 

change levels for each continuous place 
Ci

Pp   in 

current tangible marking 
k

M  are collected into 

diagonal matrices: 

)),(...,),(...,),(()(
1 knkikk

MMMdiagM β

.,,...,1
c

Pnni   

The pair ))(β,( kkk MMs   describes the 

current state of the GDPN.  Let we denote state 

space of the net by CD RP
IRINS   , that S =SD 

 SC ,   SD  SC  = , where SD denote the discrete 

components and SC  denote the continuous 
components of the S. The marking process of net at 

time   is: 

 ( )S  ={ 0),( s }.  

 

2. DYNAMIC REWRITING GDPN  

 
In this section we introduce the model of descriptive 

dynamic rewriting NH system.  

The approach proposed in [5, 6] consists in 
incorporating compositional features into GDPN 

models. In this way the modeler can identify what 

will constitute a basic component and can build the 
model with the use of descriptive operations. 

Due to the space restrictions we will only 

give a brief overview to this topic and refer the 
reader to [5] and the references therein. 

Let YX  is a binary relation. The domain 

of   is the Dom(  ) = Y and the codomain of   is 

the Cod( ) = X [7].  

Let A= < Pre, Post, Test, Inh > is a set of arcs 

belong to net H = < P, T, Pre, Post, Test, Inh, Kp , 
Kb, G, Pri, l > (see Definition 1). 

Definition 3. A dynamic rewriting NH net is 

a  system  MGGRNRN
rtr
,,,,  , where: 

    N = < H ,  , W, V >  and }...,,{ 1 krrR    is a 

finite set of discrete rewriting rules (DR) about the 

runtime structural modification of net that 

 RTP . In the graphical representation, 

the DR rule is drawn as a two embedded empty 

rectangle. We denote the set of events of the net 

by RTE
D
 ;  

    },{: RTE D is a function indicate for every 

rewriting rule the type of event can occur;  

   )(: PBagRGtr {True,False} is the 

transition rule guard function associated with 

Rr , and  )(: PBagRG
r

{True, False} is 

the rewriting rule guard function defined for each 

rule of Rr , respectively. For Rr , the 

function 
trtr GMg )(  and 

rr GMg )(  will be 

evaluated in each marking and if its are evaluates to 
True, the rewriting rule r may be enabled, otherwise 

it is disabled. Default value of 
trtr GMg )(  is True 

and for 
rr GMg )(  is False) in current 

marking M . 



31    Dynamic rewriting differential Petri nets for discrete-continuous modelling of computer systems                           

 

 Let the 
rtr

GGRNR ,,,   and the 

 MRRN ,  are represented by the descriptive 

expression DERГ and DERN, respectively. A dynamic 

rewriting structure modifying rule Rr  of RN is a 

map
WL DEDEr : , where whose codomain of the 

 rewriting operator is a fixed descriptive 

expression
LDE of a subnet 

LRN of current net RN, 

where RNRN L   with PPL  , EEL  and the set 

of arcs AAL  , and whose domain of the   is a 

descriptive expression
WDE of a new wRN  subnet 

with PPw  , EEw   and set of arcs WA .  

The  rewriting operator  represent binary 

operation which produce a structure change in the 

DERN and the net RN by replacing (rewriting) of the 

fixed current 
L

DE of subnet 
LRN  (

LDE and
LRN  

are dissolved) by the new
WDE of subnet 

WRN  now 

belong to the new modified resulting 
NRDE 

 of net 

WL
RNRNNRNR  )\(  with 

WL PPPP  )\(  

and 
WL EEEE  )\( , WL AAAA  )(  where 

the meaning of \ (and ) is operation to removing  

(adding) 
L

RN from (
W

RN  to) net RN. In this new 

net NR  , obtained by execution (fires) of enabled 

rewriting rule Rr , the places and events with the 

same attributes which belong NR  are fused. By 

default  the rewriting rules LDEr :  or 

WDEr :  describe the rewriting rule which 

fooling  holds the )\( LRNRNNR   or the 

)( WRNRNNR  .  

A state configuration of a net  RN is a pair 

( sR , ), where R  is the current structure of net 

together with a current state s , ))(β,( MMs  .  

The (
00 , sR ) with PP 0

, EE 0
 and state 0s  is 

called the initial  state configuration of  a net RN.        

Enabling and Firing of Events. The 

enabling of events depends on the marking of all 

places. We say that a transition 
Dj

Tt   of event je  

is enabled in current marking M if the if the 

enabling condition ),( Mtec jd
described by the 

logic expression (2.1).  

The discrete rewriting rule Rr j  , that 

change the structure of  RN,  is enabled in current 
marking M  if the following enabling condition 

),( Mrec jtr  is verified: 

&)),(Pr((),( jii
rp

jtr rpemMrec
ji







k
rp

m
jk

(


&)),( jk rpInh

&)),((
* jll
rp

rpTestm
jl




&)),()(( jnnp
rp

rpPostmK
n

jn




&)),(Pr(( jii
rb

rbex
ji







k
rb

x
jk

((


&)),( jk rbInh &)),(((
* jll
rb

rbTestx
jl




 

&),( Mrg j )),( Mrg jtr . 

Let the )(MT
D

 and  the )(MR  that  

 )()( MRMT
D

 is the set of enabled discrete 

transitions and rewriting rule in current 

marking M, respectively. We denote the set of 

enabled events in a current marking M by 

)()()( MRMTME
D

 .  

The event )(MEe j  fire if no other 

event )(MEek  with higher priority has 

enabled. Hence, for each event je  if 

))),(()()(( FalseMrgrt
jtrjjjj

   then (the 

firing of transition )(MTt
Dj

  or rewriting rule 

)(MRr j  change only the current marking: 

),(),( sRsR je
   RR  ( and the 

MeM
j

[  in R )). Also, for je event if  

))),(()(( TrueMrgr jrjj   then (the event 

je occur to firing of rewriting rule jr  and it 

change the configuration and marking of 

current net in following way:  

),(),( sRsR jr
  , MrM j

[ ).  

The accessible state graph of a 

 MRRN ,  net is the labeled directed graph 

whose nodes are the states and whose arcs 

which is labeled with events or rewriting rules 

of RN that are of two kinds: 

a) firing of a enabled )(MEe j   event 

determine the arc from the state ),( sR   to the 

state ( sR , ) which is labeled with event je  

then this event can fire in the net configuration 

R  at marking M and leads to new state such 

as  ),(),(: sRsRs je
 (  RR  and 

[ MeM j
[  in R );   

 b) change configuration: arcs from state ),( sR  

to state ( sR , ) labeled with the rewriting rule 

Rrj  , that  :jr (
LL MR , ) (

WW MR , ) which 
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represent the change configuration of current 

RN net: ),(),( sRsR jr
   with  MrM j

[ . 

As en example, let we consider the 

discrete part RN1 net given by the following 

descriptive expression: 

11112111
]75.2[|~|

 RurR
EDbpppDE  , 

151342311521
)(|||)(

 RtttR
EDppppbppED  , 

31422151
|)(|])8.1[(
uuR

bpbbpED 


, 

)5.12,1,5(
1510

xppM  , 

),0,95.0()(β diagM0  211 :  RR DEDEr  ,

)0(&)3(),( 511  mmMrg r . 

Also, for rewriting rule jr  is required to 

identify if 
L

RN net belong the R . Upon firing, 

the enabled events or rewriting rule modify the 

current marking and/or and modify the 

structure and current marking of RN1 in RN2 

given by the following descriptive expression:   

21112112
]75.2[|~|

 RutR
EDbpppDE  ,  


5431622 432

||(|])5.1[( pppbppED tttR       

2615 ))(||
25 Rrt EDppp  , 

3443322211
|~|)(| bpbbbbED
uuuR




, 

)8.15,1,3,1(
3321

bpppM  , 

),0,0,75.1()(β diagM 
12

1

12 :  RR DEDErr  ,

)1(&)4(),(
512
 mmMrg

r . 

 

 
Figure 3.  Translation of (a)

1RDE  in RN1 and  

(b) 
2RDE  in RN 2. 

 

The translation of 1R
DE in RN1 is shown in figure 

4a,  and 
2RDE  in RN 2 is shown in figure 4b. 

3. CONCLUSIONS 

 
In this paper we have defined the dynamic 

rewriting GDPN models from the behavioral state 

based process run-time structure change of system 

components. This approach can preserve the 

functional structure of the model and support 

several behavioral types between constituent 

components. 

However, this approach is still interesting 

as a tool to combining the visual simulation at run-

time structure change of GDPN for performance 

discrete-continuous modeling of computer systems.  
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