
27 Dynamic rewriting differential Petri nets for discrete-continuous modelling of computer systems

DYNAMIC REWRITING DIFFERENTIAL PETRI NETS FOR DISCRETE-

CONTINUOUS MODELLING OF COMPUTER SYSTEMS

E. Guţuleac

Technical University of Moldova

INTRODUCTION

Performance modelling is concerned with

the description, analysis and optimization of the
dynamic behavior of computer systems. Several

methods for verification and performance modeling

of computer systems are based on different formal

models [2]. Among the formalisms that are used,
Petri nets (PN) are the most popular. A number of

different classes of PN have been proposed [2, 8].

Timed Hybrid Petri nets (HPN) are PN based
models in which some places may hold a discrete

number of tokens and places a continuous quantity

represented by a real number [1, 3].

To make design issues and analysis
procedures more transparent, we tried to deviate as

little as possible from the concepts and tenets of

HPN. Thus, we created our extension building on

relevant previous works: HPN, Generalized

Stochastic Petri Nets [2] and Differential Petri Net

(DPN) [4]. The result is a new type of HPN, which

we call Generalized DPN (GDPN), and is able to

represent the behaviour of continuous systems and
discrete systems in a common model. The novel

features of GDPN are accepted the negative-

continuous place capacity, negative real values for

continuous place marking and negative token-
dependent arc cardinalities, that permit to generalize

the concept of HPN and DPN. The GDPN is formed

by three kinds of discrete and continuous objects:
places, transitions and arcs. Places represent some

kind of resources, transitions denote actions or

events that happen in the system and arcs link the
first two kinds of objects together, implementing the

logic of the GDPN; they assign actions to resources,

and vice versa.

To our knowledge existing methods do not
support marked-controlled reconfiguration of

systems. The purpose of this paper is to introduce

descriptive self-rewriting GDPN that can
dynamically modify their own structures by

rewriting rules transitions some of their components

thus supporting structural dynamic changes within
modeled systems.

1. LABELED GENERALIZED DPN

Various extensions have been made to the

framework of timed HPN since its in []. In this
section, we present a variant extended HPN, called

labeled GDPN, which is is derived with customary

notation from [3, 4]. Let L be a set of labels

TP LLL  ,  TP LL . Each place
ip labeled

Pi Lpl )(has a local state and transition tj has

action labeled as
Tj Ltl )(.

Definition 1: A labeled GDPN is a 11-tuple
H =<P, T, Pre, Post, Test, Inh, Kp , Kb, G, Pri, l >,

where: P is the finite set of places partitioned into a

set of discrete places PD, and a set of continuous

places PC , P=PD PC , PD  PC = . The discrete

places may contain a natural number of tokens,
while the marking of a continuous place is a real

number (fluid level). In the graphical represen-

tation, a discrete place is drawn as a single circle

while a continuous place is drawn with two
concentric circles;

 T is a finite set of transitions, that can be

partitioned into a set TD of discrete transitions and a
set TC of continuous transitions, T =TD TC , TD

 TC =  . A discrete transition tjTD is drawn

as a black bar and continuous transition tiTC is

drawn as a rectangle;

 Pre, Test and)(: PBagTPInh  respectively

is a forward flow, test and inhibition functions.

)(PBag is a discrete or continuous multiset over

P. The backward flow function in the multisets of P

is a)(: PBagPTPost  , where define the set of

arcs A and it describes the marking-dependent

cardinality of arcs connecting transitions with
places and vice-versa. The A is partitioned into

subsets: Ad, As, Ah, Ac and At. The subset Ad and

As contains the discrete normal arcs and
continuous set of arcs which can be seen as a

function: Ad:((DD TP ) (
DD PT ))

|| PIN  IZ

and the As:((DC TP ) { CD PT ))
||PIR IR ,

respecively . The arcs of Ad and As, are drawn as
single arrows. The subset of discrete inhibitory

28 Dynamic rewriting differential Petri nets for discrete-continuous modelling of computer systems

arcs is Ah: (TPD )
|| PIN 

 IN or continuous

inhibitory arcs Ah: (TPC )
||PIR IR . These

arcs are drawn with a small circle at the end. The

subset Ac defines the continuous flow arcs Ac:

((CC TP )  (CC PT ))
||PIR IR , and these

arcs are drawn as double arrows to suggest a pipe.

A test input arc At is directed from a place of any
kind to a transition of any kind, that At:

(TPD )
|| PIN 

 IN or (TPC )
||PIR IR

and are drawn as dotted single arrows. It does not
consume the content of the source place. The arc of

net is drawn if the cardinality is not identically zero

and it is labeled next to the arc with a default value

being 1. The IZ ,
IN and IR are the set of discrete

integer, natural and real numbers, respectively;


 INPK Dp : is the function-capacity of discrete

places and for each Di Pp  this is represented by

the minimum
min

ipK and maximum capacity
max

ipK ,

 minmin0
ipip

KK which can contain an

integer number of tokens, respectively. By default

0min 
ipK and

max

ipK being infinite value;

 IRPK Cb : is the function-capacity of

continuous places and for each Ci Pp  describes

the fluid lower bound min
ix and upper bounds max

ix

of fluid on each continuous place, that
min

ix  max

ix . This max
ix by default it is

 , and bound has no effect when it is set to
infinity. Each continuous place has an implicit

lower bound at level is 0;

 )(: PBagTG {True, False} is the guard

function defined for each transition. For tT a guard

function g(t, M) will be evaluated in each marking
M, and if it evaluates to true, the transition may be

enabled, otherwise t is disabled (by default is true);

 Pri: TD  IN defines the priority functions for the

firing of each transition. By default it is 1. The

enabling of a transition with higher priority disables

all the lower priority transitions;

 LPTl : , is a labeling function that assigns

a label to a nodes (transitions and places) of net. In

this way that maps the node name of net into

action name or in condition name that

)()(kj tltl but kj tt  or )()(ni plpl

but ni pp  , respectively. 

The structure of a GDPN is static.

Assuming that the behaviour of the system can be

described in terms of the current system state and its

possible changes, the dynamics of a net structure is
specified by defining its marking and marking

evolution rule.

Definition 2: A timed marked labeled GDPN is a

pair NH = <N, M0 >, where N = < H ,  , W, V >

is a labeled GDPN structure (see Definition 1) with

the respectively attributes of timed transitions and
M0 is the initial marking of the net such as:

 The current marking (state) value of a net

depends on the kind of place, and it is described by
a pair of vector-columns M = (m, x), where the m:

PD  IN and x: PC IR are marking functions of

respectively type of places. The vector-column

),0,(
Diiii

Ppmpm m with ii pm is the

number)(
ii

pm m of tokens in discrete place, and

it is represented by the black dots. The

),,(min

Ckkkkk Pbxxbxx  is vector-

column, where kkbx is the fluid level)(
kk

bx x

in continuous place kb , and it is the real number,

that is allowed to take also negative real value. The
initial marking of net is M0 = (m0, x0). The vector m0

gives the initial marking of discrete places and the

vector x0 gives the initial marking of fluid places;

 The set of discrete transitions TD is partitioned

into TTTD  0 ,  TT0 so that: T is a set

of timed discrete transitions and T0 is a set of

immediate discrete transitions. The

Pri(T0)>Pri(T). A timed discrete transition

t T is drawn as a black rectangle and has a firing

delay 
 IRPBagT)(:


 is associated to it, and

this is can be marking dependent. The


IR is the set

of nonnegative real numbers.

Let T(M) denote the set of enabled transitions in

current marking M=(m, x). Thus, a timed transi-

tions)M(Tt  is enabled in current tangible

marking M, it fires after delay),(Mt . By default

it is 1. Note once again, we do allow the firing

delay to be dependent on fluid levels;


 IRPBagTW)(: 0

 is the weight function of

immediate discrete transitions tjT0, and this type

of transition is drawn with a black thin bar and has

a zero constant firing time. If several enabled

immediate transitions)(0 TTt j  are scheduled to

fire at the same time in vanishing marking M, the

transitions tk with the respective weights wk fire

with probability:





)(0

),(/),(),(
MTt

jkk

j

MtwMtwMtq ;

29 Dynamic rewriting differential Petri nets for discrete-continuous modelling of computer systems

 IRPBagTV
C

)(: is the marking dependent

fluid rate function of timed continuous

transitions cT . These rates appear as labels next to

the continuous timed transitions. By default it is 1. If

ci Tt  is enabled in tangible marking M it fires with

rate Vi(M), that continuously change the fluid level

of continuous place PC. 

Figure 1. All the primitive of the timed GDPN.

Figure 1 summarizes the graphical

representation of all the GDPN primitives.

Figure 2. All the possible ways of placing arcs in a

timed GDPN net.

Figure 2 summarize the all possible ways of

placing arcs in a GDPN net for discrete transition
and continuous transition with the discrete places

and continuous places, respectively.

Upon firing, the discrete (continuous) tran-

sition removes a specified number (quantity) of
tokens (fluid) for each discrete (continuous) input

place, and deposits a specified number (quantity) of

tokens (fluid) for each discrete (continuous) output
place. The fluid levels of continuous places can

change the enabling/disabling of discrete and

continuous transitions.
 The role of the previous set and functions

will be clarified by providing the enabling and

firing rules. Let us denote by mi the i-th component

of the vector m, i.e., the number of tokens in
discrete place pi when the marking is m, (and xk

denote the k-th component of the vector x, i.e., the

fluid level in continuous place pk).

Enabling and Firing of Transitions. Let

T(M) the set o enabled transitions in current
marking M. We say that a discrete transition

)(MTt Dj  is enabled in current marking M if the

following enabling condition)(jd tec is verified:

&)),(Pr(()(
jii

jtip
jd

tpemtec 





k
tp

m
jk

((


&)),(jk tpInh &)),(((
* jll

jtlp

tpTestm 


&)),()(((jnnp
tp

tpPostmK
jn




&)),(Pr((jii
tb

tbex
ji







k
tb

x
jk

((


&)),(jk tbInh

&)),(((
* jll
tb

tbTestx
jl




&),(Mtg j

)),()(((jnnb
tb

txPostxK
jn




. (2.1)

The discrete transition)(MTt Dj  fire if

no other discrete transition)(MTt Dk  with higher

priority has enabled.
Also, we say that a continuous transition

)(MTu Cj  is enabled and continuously fire in

current marking M if the enabling condition

)(jc uec is verified:

&)0(()(


i
ub

jc xuec
ji




k
up

m
jk

((


&)),(jk upInh &)),(((
* jll
up

upTestm
jl







k
ub

x
jk

((


&)),(jk ubInh),(Mtg j &

&)),(((
* jll
ub

ubTestx
jl




)),()(((jnjnb
ub

uxPostVxK
jn




, (2.2)

t1

p1

p2

p3

p4
5

discrete_normal_arc

inhibitor_arc

discrete_places

2

discrete_test_arc

continuous_place

b1

2.4
2.5continuous_set_arc

b2

1.5
continuous_test_arc

b3

4.5
3.8

Continuous

gt1(M, X)

 guard_function_of_t1

5.6

inhibitor_arc

discrete

b1

2.4

b2

1.5

b3
4.5

p1

q1
3.5

b4

6.35

b5
3.6

4.6

p2

2.63

continuous

flow_arc

discrete_test_arcinhibitor_arc

continuous

continuous_place

discrete_placediscrete

test_arc inhibitor_arc

gq1 (M,X) - is guard function of q1

p1

b1

b2

b4

u1

30 Dynamic rewriting differential Petri nets for discrete-continuous modelling of computer systems

and no other continuous transition with higher

priority has concession.

The current marking M evolves in time  .

If an immediate discrete transition has concession in
current marking M=(m, x), it is enabled and the

marking is vanishing. Otherwise, the marking is

tangible and any timed discrete transition with
concession is enabled in it. An immediate discrete

transition
jt enabled in current marking M=(m, x)

yields a new vanishing marking),(xmM . We

can write (m, x) [tj >),(xm). Thus, the new

discrete marking is:

),(Pr),()()(
iiii

pepPostpp  mm
.

If the M=(m, x) is tangible, the fluid could
continuously flow through the flow arcs Ac of

enabled continuous transitions into or out of fluid

places. As a consequence of this, a continuous

transition tc is enabled at M iff for every ,cc tp 

x(pc)>0, and its enabling degree enab(tc , M) is [1]:

enab(tc ,M)=
tpc


min {x(pc)/Pre(pc , tc)}.

In the GDPN the current dynamic

balance)(M
k

 change the fluid level of continuous

place
Ck

Pp  in current tangible marking M is

given by the following relation:

)()()(MMM
kkk

   , with

 
),()(V)(

kj
McTjt

jk
btPreMM 



 and

 
),()(V)(

kl
McTlt

kk
btPostMM 



 ,

where for any
Cl Tt  the)(M

k

 is an input fluid

rate of continuous place
Ck

Pp  ,)(M
k

 is an

output fluid rate of this place, and)(MT
c

 is a set of

continuous transition teach which is enabled in M.

Thus, during the time 0 the fluid

level)(
kk

bx x continuously change an con-

formity with the relation:  )(Mxx
kkk

.

We allow the firing rates and the enabling

functions of the timed discrete transitions, the firing
speeds and enabling functions of the timed

continuous transitions, and arc cardinalities to be

dependent on the current state of the GDPN, as
defined by the marking M .

Let the dynamic balances)(Mi which

change levels for each continuous place
Ci

Pp  in

current tangible marking
k

M are collected into

diagonal matrices:

)),(...,),(...,),(()(
1 knkikk

MMMdiagM β

.,,...,1
c

Pnni 

The pair))(β,(kkk MMs  describes the

current state of the GDPN. Let we denote state

space of the net by CD RP
IRINS   , that S =SD

 SC , SD  SC = , where SD denote the discrete

components and SC denote the continuous
components of the S. The marking process of net at

time  is:

 ()S  ={ 0),(s }.

2. DYNAMIC REWRITING GDPN

In this section we introduce the model of descriptive

dynamic rewriting NH system.

The approach proposed in [5, 6] consists in
incorporating compositional features into GDPN

models. In this way the modeler can identify what

will constitute a basic component and can build the
model with the use of descriptive operations.

Due to the space restrictions we will only

give a brief overview to this topic and refer the
reader to [5] and the references therein.

Let YX  is a binary relation. The domain

of  is the Dom() = Y and the codomain of  is

the Cod() = X [7].

Let A= < Pre, Post, Test, Inh > is a set of arcs

belong to net H = < P, T, Pre, Post, Test, Inh, Kp ,
Kb, G, Pri, l > (see Definition 1).

Definition 3. A dynamic rewriting NH net is

a system  MGGRNRN
rtr
,,,,  , where:

 N = < H ,  , W, V > and }...,,{ 1 krrR  is a

finite set of discrete rewriting rules (DR) about the

runtime structural modification of net that

 RTP . In the graphical representation,

the DR rule is drawn as a two embedded empty

rectangle. We denote the set of events of the net

by RTE
D
 ;

 },{: RTE D is a function indicate for every

rewriting rule the type of event can occur;

 )(: PBagRGtr {True,False} is the

transition rule guard function associated with

Rr , and )(: PBagRG
r

{True, False} is

the rewriting rule guard function defined for each

rule of Rr , respectively. For Rr , the

function
trtr GMg )(and

rr GMg )(will be

evaluated in each marking and if its are evaluates to
True, the rewriting rule r may be enabled, otherwise

it is disabled. Default value of
trtr GMg )(is True

and for
rr GMg )(is False) in current

marking M .

31 Dynamic rewriting differential Petri nets for discrete-continuous modelling of computer systems

 Let the 
rtr

GGRNR ,,,  and the

 MRRN , are represented by the descriptive

expression DERГ and DERN, respectively. A dynamic

rewriting structure modifying rule Rr of RN is a

map
WL DEDEr : , where whose codomain of the

 rewriting operator is a fixed descriptive

expression
LDE of a subnet

LRN of current net RN,

where RNRN L  with PPL  , EEL  and the set

of arcs AAL  , and whose domain of the  is a

descriptive expression
WDE of a new wRN subnet

with PPw  , EEw  and set of arcs WA .

The rewriting operator  represent binary

operation which produce a structure change in the

DERN and the net RN by replacing (rewriting) of the

fixed current
L

DE of subnet
LRN (

LDE and
LRN

are dissolved) by the new
WDE of subnet

WRN now

belong to the new modified resulting
NRDE 

 of net

WL
RNRNNRNR )\(with

WL PPPP )\(

and
WL EEEE )\(, WL AAAA )(where

the meaning of \ (and) is operation to removing

(adding)
L

RN from (
W

RN to) net RN. In this new

net NR  , obtained by execution (fires) of enabled

rewriting rule Rr , the places and events with the

same attributes which belong NR  are fused. By

default the rewriting rules LDEr : or

WDEr : describe the rewriting rule which

fooling holds the)\(LRNRNNR  or the

)(WRNRNNR  .

A state configuration of a net RN is a pair

(sR ,), where R is the current structure of net

together with a current state s ,))(β,(MMs  .

The (
00 , sR) with PP 0

, EE 0
 and state 0s is

called the initial state configuration of a net RN. 

Enabling and Firing of Events. The

enabling of events depends on the marking of all

places. We say that a transition
Dj

Tt  of event je

is enabled in current marking M if the if the

enabling condition),(Mtec jd
described by the

logic expression (2.1).

The discrete rewriting rule Rr j  , that

change the structure of RN, is enabled in current
marking M if the following enabling condition

),(Mrec jtr is verified:

&)),(Pr((),(jii
rp

jtr rpemMrec
ji







k
rp

m
jk

(


&)),(jk rpInh

&)),((
* jll
rp

rpTestm
jl




&)),()((jnnp
rp

rpPostmK
n

jn




&)),(Pr((jii
rb

rbex
ji







k
rb

x
jk

((


&)),(jk rbInh &)),(((
* jll
rb

rbTestx
jl




&),(Mrg j)),(Mrg jtr .

Let the)(MT
D

 and the)(MR that

)()(MRMT
D

 is the set of enabled discrete

transitions and rewriting rule in current

marking M, respectively. We denote the set of

enabled events in a current marking M by

)()()(MRMTME
D

 .

The event)(MEe j  fire if no other

event)(MEek  with higher priority has

enabled. Hence, for each event je if

))),(()()((FalseMrgrt
jtrjjjj

  then (the

firing of transition)(MTt
Dj

 or rewriting rule

)(MRr j  change only the current marking:

),(),(sRsR je
   RR  (and the

MeM
j

[in R)). Also, for je event if

))),(()((TrueMrgr jrjj  then (the event

je occur to firing of rewriting rule jr and it

change the configuration and marking of

current net in following way:

),(),(sRsR jr
  , MrM j

[).

The accessible state graph of a

 MRRN , net is the labeled directed graph

whose nodes are the states and whose arcs

which is labeled with events or rewriting rules

of RN that are of two kinds:

a) firing of a enabled)(MEe j  event

determine the arc from the state),(sR to the

state (sR ,) which is labeled with event je

then this event can fire in the net configuration

R at marking M and leads to new state such

as ),(),(: sRsRs je
 ( RR and

[MeM j
[in R);

 b) change configuration: arcs from state),(sR

to state (sR ,) labeled with the rewriting rule

Rrj  , that :jr (
LL MR ,) (

WW MR ,) which

32 Dynamic rewriting differential Petri nets for discrete-continuous modelling of computer systems

represent the change configuration of current

RN net:),(),(sRsR jr
  with MrM j

[.

As en example, let we consider the

discrete part RN1 net given by the following

descriptive expression:

11112111
]75.2[|~|

 RurR
EDbpppDE  ,

151342311521
)(|||)(

 RtttR
EDppppbppED  ,

31422151
|)(|])8.1[(
uuR

bpbbpED 


,

)5.12,1,5(
1510

xppM  ,

),0,95.0()(β diagM0  211 :  RR DEDEr  ,

)0(&)3(),(511  mmMrg r .

Also, for rewriting rule jr is required to

identify if
L

RN net belong the R . Upon firing,

the enabled events or rewriting rule modify the

current marking and/or and modify the

structure and current marking of RN1 in RN2

given by the following descriptive expression:

21112112
]75.2[|~|

 RutR
EDbpppDE  ,


5431622 432

||(|])5.1[(pppbppED tttR

2615))(||
25 Rrt EDppp  ,

3443322211
|~|)(| bpbbbbED
uuuR




,

)8.15,1,3,1(
3321

bpppM  ,

),0,0,75.1()(β diagM 
12

1

12 :  RR DEDErr  ,

)1(&)4(),(
512
 mmMrg

r .

Figure 3. Translation of (a)

1RDE in RN1 and

(b)
2RDE in RN 2.

The translation of 1R
DE in RN1 is shown in figure

4a, and
2RDE in RN 2 is shown in figure 4b.

3. CONCLUSIONS

In this paper we have defined the dynamic

rewriting GDPN models from the behavioral state

based process run-time structure change of system

components. This approach can preserve the

functional structure of the model and support

several behavioral types between constituent

components.

However, this approach is still interesting

as a tool to combining the visual simulation at run-

time structure change of GDPN for performance

discrete-continuous modeling of computer systems.

Bibliography

1. Alla, A., David, H. Continuous and hybrid Petri
nets. Journal of Systems Circuits and Computers, 8

(1) , 1998, pp. 159-188.

2. Ajmone-Marsan, M., Balbo, G., Chiola, G.,

Donatelli, S., Francheschinis, G. Modeling with
Generalized Stochastic Petri Nets// John

Wiley&Sons, 1995.

3. David, R. Modelling Hybrid Systems using
Continuous and Hybrid Petri Nets. In Proceedings

of International Conference PNPM’97, 1997,

pp.135-144.
4. Demongodin, I., Koussoulas, N.T. Differential

Petri Nets: Representing continuous systems in a

discrete-event world. IEEE Transactions on

Automatic Control, Vol. 43, No. 4, 1998.
5. Guţuleac, E. Descriptive Compositional Cons-

truction of GSPN Models for Performance

Evaluation of Computer Systems. In: Proc. of 8-th
International Symposium on Automatic Control and

Computer Science, SAACS2004, Iasi, România, 22-

23 October 2004.
6. Guţuleac, E. Descriptive self-rewriting genera-

lized stochastic Petri nets for modeling of computer

systems. Meridian Ingineresc, Nr. 2, 2005, pp.18-

23.
7. Llorens, M. and Oliver, J. Structural and

Dynamic Changes in Concurrent Systems:

Reconfigurable Nets. In: IEEE Transactions on
Computers, vol. 53, no. 9, pp. 1147-1158,

September 2004.

8. Murata, T. Petri Nets: Properties, Analysis and

Applications. In Proceeding of the IEEE, vol.77,
no. 4, 1989, pp.541-580.

Recomandat spre publicare: 21.02.06

