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INTRODUCTION

Performance modelling is concerned with
the description, analysis and optimization of the
dynamic behavior of computer systems. Several
methods for verification and performance modeling
of computer systems are based on different formal
models [2]. Among the formalisms that are used,
Petri nets (PN) are the most popular. A number of
different classes of PN have been proposed [2, 8].
Timed Hybrid Petri nets (HPN) are PN based
models in which some places may hold a discrete
number of tokens and places a continuous quantity
represented by a real number [1, 3].

To make design issues and analysis
procedures more transparent, we tried to deviate as
little as possible from the concepts and tenets of
HPN. Thus, we created our extension building on
relevant previous works: HPN, Generalized
Stochastic Petri Nets [2] and Differential Petri Net
(DPN) [4]. The result is a new type of HPN, which
we call Generalized DPN (GDPN), and is able to
represent the behaviour of continuous systems and
discrete systems in a common model. The novel
features of GDPN are accepted the negative-
continuous place capacity, negative real values for
continuous place marking and negative token-
dependent arc cardinalities, that permit to generalize
the concept of HPN and DPN. The GDPN is formed
by three kinds of discrete and continuous objects:
places, transitions and arcs. Places represent some
kind of resources, transitions denote actions or
events that happen in the system and arcs link the
first two kinds of objects together, implementing the
logic of the GDPN; they assign actions to resources,
and vice versa.

To our knowledge existing methods do not
support marked-controlled reconfiguration of
systems. The purpose of this paper is to introduce
descriptive  self-rewriting GDPN that can
dynamically modify their own structures by
rewriting rules transitions some of their components
thus supporting structural dynamic changes within
modeled systems.

1. LABELED GENERALIZED DPN

Various extensions have been made to the
framework of timed HPN since its in [ ]. In this
section, we present a variant extended HPN, called
labeled GDPN, which is is derived with customary
notation from [3, 4]. LetL be a set of labels
L=L,ulL,, LynL, =Z. Each place p, labeled
I(p,)eL, has a local state and transition t; has
action labeled as I(t;) e L, .

Definition 1: A labeled GDPN is a 11-tuple
HI=<P, T, Pre, Post, Test, Inh, K,, Ky, G, Pri, | >,
where: P is the finite set of places partitioned into a
set of discrete places Pp, and a set of continuous
places Pc, P=Pp\U Pc , Pb nPc=@. The discrete
places may contain a natural number of tokens,
while the marking of a continuous place is a real
number (fluid level). In the graphical represen-
tation, a discrete place is drawn as a single circle
while a continuous place is drawn with two
concentric circles;

e T is a finite set of transitions, that can be
partitioned into a set Tp of discrete transitions and a
set Tc of continuous transitions, T =TpU Tc , To
nTc= J. A discrete transition tje Tp is drawn
as a black bar and continuous transition tie Tc is
drawn as a rectangle;

e Pre, Testand Inh:PxT —Bag(P) respectively
is a forward flow, test and inhibition functions.
Bag (P) is a discrete or continuous multiset over
P. The backward flow function in the multisets of P
isaPost:T xP — Bag(P), where define the set of
arcs A and it describes the marking-dependent
cardinality of arcs connecting transitions with
places and vice-versa. The A is partitioned into
subsets: Aqg, As, An, Ac and A:. The subset Aq and
As contains the discrete normal arcs and
continuous  set of arcs which can be seen as a
function: Ag:((P, xT,)U (T, xP,))x IN'PI—1Z
and the As((Pe xTp)U{T, xP.))xIRP 5IR,

respecively . The arcs of Aqand A, are drawn as
single arrows. The subset of discrete inhibitory
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arcs is An: (PoxT)xIN!"! 5N, or continuous
inhibitory arcs An: (P xT)x IR"! -5 IR. These

arcs are drawn with a small circle at the end. The
subset A. defines the continuous flow arcs Ac:

(P xTe) U(Te xP:)xIRP! 5 IR, and these

arcs are drawn as double arrows to suggest a pipe.
A test input arc A is directed from a place of any
kind to a transition of any kind, that Ac:

(Po xT)xINPI 5N, or (P xT)xIRPI IR

and are drawn as dotted single arrows. It does not
consume the content of the source place. The arc of
net is drawn if the cardinality is not identically zero
and it is labeled next to the arc with a default value
being 1. The 1Z,IN, and IR are the set of discrete

integer, natural and real numbers, respectively;
e K_:P, — IN, is the function-capacity of discrete

places and for each p, € P, this is represented by
the minimum K7™ and maximum capacity K ™™,
0<K™<K™ <40 which can contain an
integer number of tokens, respectively. By default
Ko =0 and K™ being infinite value;

e K,:P. >IR is the
continuous places and for each p, e P, describes

function-capacity  of

the fluid lower bound x™" and upper bounds x*
of fluid on each continuous place, that
—o0 < X™ < x™ < 400, This x™ by default it is
oo, and bound has no effect when it is set to
infinity. Each continuous place has an implicit
lower bound at level is 0;

¢ G:TxBag(P) »>{True, False} is the guard

function defined for each transition. For teT a guard
function g(t, M) will be evaluated in each marking
M, and if it evaluates to true, the transition may be
enabled, otherwise t is disabled (by default is true);
e Pri: To— IN, defines the priority functions for the
firing of each transition. By default it is 1. The
enabling of a transition with higher priority disables
all the lower priority transitions;

e [:TUP— L, isa labeling function that assigns

a label to a nodes (transitions and places) of net. In
this way that maps the node name of net into
action name or in condition name that

I(t;)=1(t)=a but t; =L or I(p)=I(p,)=
but p, # p,, , respectively. ]

The structure of a GDPN is static.
Assuming that the behaviour of the system can be

described in terms of the current system state and its
possible changes, the dynamics of a net structure is
specified by defining its marking and marking
evolution rule.

Definition 2: A timed marked labeled GDPN is a
pair NH =<N, Mo >, where N=<H/7", 9, W,V >
is a labeled GDPN structure (see Definition 1) with
the respectively attributes of timed transitions and
Mo is the initial marking of the net such as:

e The current marking (state) value of a net
depends on the kind of place, and it is described by
a pair of vector-columns M = (m, x), where the m:
Po—» IN, and x: Pc— R are marking functions of
respectively type of places. The vector-column
m=(m,p,,m >0,V p, P, ) with m.p, is the
number m, = m(p, ) of tokens in discrete place, and
it is represented by the black dots. The
X=(xb,, X =x"",Vb, eP.)is vector-
column, where x,b, is the fluid level x, = x(b,)

in continuous place b, , and it is the real number,

that is allowed to take also negative real value. The
initial marking of net is Mo= (Mo, Xo). The vector mg
gives the initial marking of discrete places and the
vector Xo gives the initial marking of fluid places;

o The set of discrete transitions Tp is partitioned
into T, =T, UT,, T, "T, = sothat: T, is a set
of timed discrete transitions and To is a set of
immediate discrete transitions. The

Pri(To)>Pri(T_). A timed discrete transition
te T_is drawn as a black rectangle and has a firing
delay @:T_xBag(P) —IR, is associated to it, and
this is can be marking dependent. The IR, is the set
of nonnegative real numbers.

Let T(M) denote the set of enabled transitions in

current marking M=(m, x). Thus, a timed transi-
tions teT . (M) is enabled in current tangible

marking M, it fires after delay (t, M) . By default

it is 1. Note once again, we do allow the firing
delay to be dependent on fluid levels;
e W:T,xBag(P)— IR, is the weight function of

immediate discrete transitions tje To, and this type
of transition is drawn with a black thin bar and has
a zero constant firing time. If several enabled
immediate transitions t, T, (T)are scheduled to

fire at the same time in vanishing marking M, the
transitions t« with the respective weights wi fire
with probability:

qlt,, M)=w(t, M)/ D w(t;, M);

tjeTo(M)
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e VT, xBag(P)— IRis the marking dependent
fluid rate function of timed continuous
transitions T_. These rates appear as labels next to
the continuous timed transitions. By default it is 1. If
t; €T, is enabled in tangible marking M it fires with
rate Vi(M), that continuously change the fluid level

of continuous place Pc. [ |
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Figure 1. All the primitive of the timed GDPN.

Figure 1 summarizes the
representation of all the GDPN primitives.
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Figure 2. All the possible ways of placing arcs in a
timed GDPN net.

Figure 2 summarize the all possible ways of
placing arcs in a GDPN net for discrete transition
and continuous transition with the discrete places
and continuous places, respectively.

Upon firing, the discrete (continuous) tran-
sition removes a specified number (quantity) of
tokens (fluid) for each discrete (continuous) input
place, and deposits a specified number (quantity) of
tokens (fluid) for each discrete (continuous) output
place. The fluid levels of continuous places can
change the enabling/disabling of discrete and
continuous transitions.

The role of the previous set and functions
will be clarified by providing the enabling and
firing rules. Let us denote by m; the i-th component
of the vector m, i.e., the number of tokens in
discrete place pi when the marking is m, (and X«
denote the k-th component of the vector X, i.e., the
fluid level in continuous place px).

Enabling and Firing of Transitions. Let
T(M) the set o enabled transitions in current
marking M. We say that a discrete transition
t; eT,(M)is enabled in current marking M if the

following enabling condition €c, (tj) is verified:
ec,(t,)=( A (m =Pre(p,.t;)& ( A (m, <
vpietj °t

Vpye i

Inh(p,.t;)) & ( A (m =Test(p,,t))) &

(A ((K,—m,)=Post(p,,t;)) &

Vp, et
( A (x=Preid,t;)& (A (X <Inh(b,t))) &
b et Vb e't;
(A, (x =Test(b, 1)) & g(t;,M) &
( A (K, —x,) = Post(x,,t,)) . (2.1)
Vb, et}

The discrete transition t; e T, (M) fire if

no other discrete transition t, e T, (M) with higher

priority has enabled.
Also, we say that a continuous transition
u; eTc(M)is enabled and continuously fire in

current marking M if the enabling condition
ec.(u;) is verified:

ec.(u)=( A (x>0& (A (m <
Vb e®u; Vpee'u;
Inh(p,.u,)) & (vp@u(mI >Test(p,,u;)) &
(A, (% <Inh(b,u;) & g(t;,M) &
(A (X 2Test(b,u;)) &
Vb e uj

(vbn/;u}((Kb —X,) =2V, -Post(x,,u;)), (22)
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and no other continuous transition with higher
priority has concession.

The current marking M evolves in time 7.
If an immediate discrete transition has concession in
current marking M=(m, x), it is enabled and the
marking is vanishing. Otherwise, the marking is
tangible and any timed discrete transition with
concession is enabled in it. An immediate discrete
transition t; enabled in current marking M=(m, X)

yields a new vanishing marking M’ =(m’, x) . We
can write (m, x) [t >(m’, x)). Thus, the new
discrete marking is:

m'(p,)=m’(p,) + Post(-, p,)—Pre(, p)
If the M=(m, x) is tangible, the fluid could
continuously flow through the flow arcs A of

enabled continuous transitions into or out of fluid
places. As a consequence of this, a continuous

transition tc is enabled at M iff for every p_e°t_,
X(pc)>0, and its enabling degree enab(t;, M) is [1]:
enab(t;,M )=min N X (pe)/Pre(pe, to)}-

In the GDPN the current dynamic
balance g, (M) change the fluid level of continuous
place p, =P. in current tangible marking M is
given by the following relation:

B.M)=p:(M)- B (M), with
B(M)= % V,(M)-Pre(t,b,) and

vtjeTe(M)

ﬁki(M): Z\/)k (M) POSt(tH bk) )

v €T (M
where for any t, €T, the B /(M)is an input fluid
rate of continuous place p,=P., S (M) is an
output fluid rate of this place, and T_(M) is a set of

continuous transition teach which is enabled in M.
Thus, during the time A4z — 0the fluid

level x, =x(b ) continuously change an con-
formity with the relation: X, = x, + 8, (M)-Az .

We allow the firing rates and the enabling
functions of the timed discrete transitions, the firing
speeds and enabling functions of the timed
continuous transitions, and arc cardinalities to be
dependent on the current state of the GDPN, as
defined by the marking M .

Let the dynamic balances g (M) which
change levels for each continuous place p, € P. in
current tangible marking M, are collected into
diagonal matrices:

B(Mk)zdiag(ﬂl (Mk)""’ﬁi(Mk)Y"'Yﬂn(Mk))’

i=1..,n n=|P,

The pair s, =(M,, B(M,)) describes the
current state of the GDPN. Let we denote state
space of the net by S =IN!"!x IR that s =5p

USc, SonSc =, where Sp denote the discrete
components and Sc  denote the continuous
components of the S. The marking process of net at
time 7 is:

S(z)={ s(z), 7=0}.

2. DYNAMIC REWRITING GDPN

In this section we introduce the model of descriptive
dynamic rewriting NH system.

The approach proposed in [5, 6] consists in
incorporating compositional features into GDPN
models. In this way the modeler can identify what
will constitute a basic component and can build the
model with the use of descriptive operations.

Due to the space restrictions we will only
give a brief overview to this topic and refer the
reader to [5] and the references therein.

Let X pY is a binary relation. The domain

of p isthe Dom( p ) =pY and the codomain of p is
the Cod(p) = Xp [7].
Let A= < Pre, Post, Test, Inh > is a set of arcs

belong to net HI"' = < P, T, Pre, Post, Test, Inh, Kp,
Kb, G, Pri, | > (see Definition 1).

Definition 3. A dynamic rewriting NH net is
a system RN =<N, R,¢,G, G,, M >, where:
e N=<Hr,o,W,V>andR={r,...r} isa
finite set of discrete rewriting rules (DR) about the
runtime structural modification of net that
PATNR=g. In the graphical representation,
the DR rule is drawn as a two embedded empty
rectangle. We denote the set of events of the net
byE=T, UR;
e ¢:E —>{T,,R}is afunction indicate for every
rewriting rule the type of event can occur;
e G, :RxBag(P) »>{TrueFalse} is the
transition rule guard function associated with
reR, and G, : RxBag(P) — {True, False} is
the rewriting rule guard function defined for each
rule of reR, respectively. ForVreR, the
function g,(M)eG, and g,(M)eG, will be
evaluated in each marking and if its are evaluates to
True, the rewriting rule r may be enabled, otherwise
it is disabled. Default value of g, (M) € G, is True
g, (M)eG, is

and for current

marking M .

False) in
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Let the R7"=<N, R,¢,G, G, > and the
RN =<R7", M > are represented by the descriptive

expression DEg; and DEgy, respectively. A dynamic
rewriting structure modifying rule r e R of RN is a
map r :DE, >DE,,, where whose codomain of the
> rewriting operator is a fixed descriptive
expression DE, of a subnet RN of current net RN,
where RN, < RN with B, < P, E, < Eand the set
of arcs A < A, and whose domain of the > is a
descriptive expression DE, of a new RN subnet

withP, < P, E, < E andsetofarcs A, .
The rewriting operator > represent binary

operation which produce a structure change in the
DEgrn and the net RN by replacing (rewriting) of the
fixed current DE_ of subnet RN, ( DE, andRN,

are dissolved) by the new DE,, of subnet RN,, now
belong to the new modified resulting DE . of net
RN'=(RN\RN,)URN, with P'=(P\P)UPR,
and E'=(E\E, )UE,, A'=(A-A)+ A, where
the meaning of \ (and v ) is operation to removing
(adding) RN, from (RN, to) net RN. In this new
net RN', obtained by execution (fires) of enabled
rewriting ruler e R, the places and events with the
same attributes which belong RN’ are fused. By
default ~ the rewriting rules r:DE > or
r:J>DE, describe the rewriting rule which
fooling  holds the RN’'=(RN\RN ) or the
RN'=(RNURN,, ).

A state configuration of a net RN is a pair
(R7,s), where RI™ is the current structure of net
together with a current state s, s=(M, B(M)).
The (R7;,s,) with P, c P,E, c E and state s, is
called the initial state configuration of a net RN. ®

Enabling and Firing of Events. The
enabling of events depends on the marking of all

places. We say that a transition t, T, of event e;
is enabled in current marking M if the if the
enabling condition ec, (t;, M )described by the
logic expression (2.1).

The discrete rewriting rulerj e R, that

change the structure of RN, is enabled in current
marking M if the following enabling condition

ec, (r;, M) is verified:
ec,(r,M)=( A (m =Pre(p,r;)) &
P e

A (m < Inh(p,,r)) &

Vpy e T

A, (m =Test(p,,r;)) &

vp e r

A ((Kpn —m,) = Post(p,, I;)) &

Vpner]

(A (=Pre@,r)& (A (X<
vbie'r; vby €° 5

Inh(b,,r;)) & (Vb/\ v(x, >Test(b,r;)) &

9(rj, M) & g, (r;,M)) .

Let the T,(M) and the R(M) that
T.(M)NR(M) =2 is the set of enabled discrete
transitions and rewriting rule in current
marking M, respectively. We denote the set of
enabled events in a current marking M by
EM)=T,(M)UR(M).

The event e; e E(M)fire if no other
e, € E(M)with higher priority has

event
enabled. Hence, for each event e if

(¢,=t;)v (¢, =1, )A(9,(r,M)=False)) then (the
firing of transition t, T (M) or rewriting rule
r; € R(M)change only the current marking:

(R, s)—3—>(RI,s') < (Rr=Rr and the
M[e; >M" inR7)). Also, for e event if
(#;=1,)~(9,(r;;M)=True )) then (the event
e;occur to firing of rewriting rule r, and it
change the configuration and marking of
current net in following way:

(RI, 8)——>(RI"",s), M[r; >M").

The accessible state graph of a
RN =<R/",M > net is the labeled directed graph

whose nodes are the states and whose arcs
which is labeled with events or rewriting rules
of RN that are of two kinds:

a) firing of a enabled e; e E(M) event
determine the arc from the state (R7",s) to the
state (R/,s") which is labeled with event e,

then this event can fire in the net configuration
R at marking M and leads to new state such

as s': (RI',s)——(RI"",s") < (RI'=RI" and
[M[e; >M" in RI");

b) change configuration: arcs from state (Rr,s)
to state (R7,s') labeled with the rewriting rule
r,eR,that r;: (R ,M_)>(RI;,, M, ) which
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represent the change configuration of current
RN net: (RI7, s)——(R7™', s') with M[r, >M".
As en example, let we consider the

discrete part RN1 net given by the following
descriptive expression:

DE.,.=n.|, P,V B, |, b[2.75] v DE;

RI1?

DE; ., =(p,- p.-b) 1, P, 1, P, L. (PO P) v DEL,,,
DE;,. =(p, -b[1.8])1, b, v (p,-b),,
M,=("p,,1p., 12.5x)),
B(M,)=diag(0.95, 0), r,:DE;,, >DE,,,
g, (r,M)=(m, =3)&(m; =0).
Also, for rewriting rule r; is required to

identify if rNn net belong thers . Upon firing,

the enabled events or rewriting rule modify the

current marking and/or and modify the

structure and current marking of RN1 in RN2

given by the following descriptive expression:
DER r2— p1 |t1 pz Vv ﬁl |u1 b1[275]v DE;rz’

DEg, =(p, - Ps - 0i[1.5]) |t2 pe,(lt3 Py |t4 ps v
|t5 Ps |r2 (PO pe)) v DEgy,

DEF'e'r1:b1 |u2 bz Vv (bz ba) |u3 VEA |u4 b3,
M=(1p,,3p,,1p,,15.8b,),
B(M)=diag(1.75, 0,0), r,=r,':DE,,, > DEg,,,
g,(r,M)=(m =4) &(m, =1).

grzl, M) = Gl =3)&(n5=0

in RN1 and

RI1

Figure 3. Translation of (a) DE
(b) DE,., INRN 2.

The translation of DE .. in RN1 is shown in figure

4a, and DE .., in RN 2 is shown in figure 4b.

RI'2

3. CONCLUSIONS

In this paper we have defined the dynamic
rewriting GDPN models from the behavioral state
based process run-time structure change of system
components. This approach can preserve the
functional structure of the model and support
several behavioral types between constituent
components.

However, this approach is still interesting
as a tool to combining the visual simulation at run-
time structure change of GDPN for performance
discrete-continuous modeling of computer systems.
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