Meters of Impedance with Simulated Resonance

Nicolaev P.
Technical University of Moldova
Nicolaevpavel@gmail.com

Abstract

A meter of impedance based on the method of simulated resonance for impedance components measuring is presented. The meter of impedance is based on series resonant measuring circuit containing an impedance simulator as reference element. Excepting the very high power levels, the fourquadrant chopper has certain advantages such as: high operational frequency, smooth and linear control, high efficiency and fast response.

Key words - meter of impedance, simulated resonance, impedance simulator, impedance components.

I. Introduction

For precision measuring of the impedance components with various characters, the method of simulated resonance (MRS) may be applied [1]. Essence of MRS consists into obtaining of the resonance effect between the measured impedance and a simulated impedance, the components of which may be separately regulated. In the state of the full resonance of the measuring circuit, the unknown components of measured impedance are determined from the known equations of equilibrium [1].

Practical implementation of the MRS is possible in series or parallel resonance measuring circuits (RMS). Each type of them are the specifically features, which determines its domain of application. Particularly, the series RMS is recommended for measuring of impedance with the great values of the parameters, the parallel RMS - for measuring the components of admittance in the opposite case [1]. The presented above meter of impedance contain the series RMS and the result of measurement is presented in the form of values of active and reactive components. On the necessity, the result may be recalculated in any other necessary form.

An integral component of the meter of impedance is the metrological impedance simulator (MSI). It executes the function of reproduction of the reference impedance in the process of measurement and it directly determines the measurement accuracy. The questions of developments and applications of these devices are very complex and require the separate examination, but some of them are examined in [1], [1]. For our purposes was applied the current - commanded MSI capable to reproduce the simulated impedances expressed in Cartesian coordinates. Its structure is synthesized by formal - structural method [1] and ensures the separate regulation of the both components of impedance.

As will be shown in further, the presented below automatical meter of impedance possesses the high accuracy of the impedance components measurement, has the simple algorithm of measurement and it can be practically realized
both in the simple variant of tester and in the form of the precise laboratory device.

II. METHOD OF MEASUREMENT

In difference from the classical resonance method of measurement of impedance components, the method of simulated resonance is based on the full resonance in the measuring circuit. The effect of resonance is reached at the both components of measured impedance, active and reactive, independent on its characters. For this purpose the impedance ensuring the effect of resonance is reproduced by means of impedance simulator, wich makes it possible to control the character and the values of it components. The diagram of conversion information process for the method is represented on fig. 1 .

Fig. 1. Diagram of the conversion information process.
The measured impedance $\boldsymbol{Z}_{\boldsymbol{x}}$ is summarized with the reproduced by MSI reference impedance \boldsymbol{Z}_{m} and forms the resulting impedance ΔZ :

$$
\begin{equation*}
\Delta Z=Z_{x}+Z_{m} \tag{1}
\end{equation*}
$$

Under the influence of the current $\boldsymbol{I}_{\boldsymbol{G}}, \boldsymbol{\Delta Z}$ is converted into voltage $\boldsymbol{U}_{d e}$, containing information about the state of the measuring circuit:

$$
\begin{equation*}
U_{d e}=I_{G} \cdot \Delta Z=I_{G}\left(Z_{x}+Z_{m}\right) . \tag{2}
\end{equation*}
$$

The functional organum of null FNO, in dependents of voltage \boldsymbol{U}_{d}, regulate the digital values D_{r} and D_{x}, wich, under the influence of elementary measures of resistance r_{m} and reactive component x_{m}, forms the active R_{m} and the reactive X_{m} components of the reproduced by MSI reference impedance $\boldsymbol{Z}_{\boldsymbol{m}}$. The type of FNO may be extremal or phase - commanded [2], in dependence of the equilibration algorithms [3]. The process of measurement consists in the sequential regulation of active and reactive components of simulated impedance $\boldsymbol{Z}_{\boldsymbol{m}}$ before obtaining the state of equilibrium in the measuring circuit. The simplest condition of equilibrium [4]:

$$
\begin{equation*}
\boldsymbol{U}_{\boldsymbol{d}}=\boldsymbol{I}_{\boldsymbol{G}}\left(\boldsymbol{Z}_{\boldsymbol{x}}+\boldsymbol{Z}_{\boldsymbol{m}}\right)=0 \tag{3}
\end{equation*}
$$

from where it follows:

$$
\begin{equation*}
Z_{x}+Z_{m}=R_{x}+j X_{x}+R_{m}+j X_{m}=0 \tag{4}
\end{equation*}
$$

where $R_{x}, X_{x}-$ respectively, the active and the reactive components of measured impedance \boldsymbol{Z}_{x}. Solutions of (4) are:

$$
\begin{equation*}
R_{x}=-R_{m}, X_{x}=-X_{m} . \tag{5}
\end{equation*}
$$

As follows from (5), after equilibration of the measuring circuit at the active and reactive components, the unknown components R_{x}, X_{x} of the measured impedance \boldsymbol{Z}_{x} are determined from the known components R_{m}, X_{m} of the reproduced by MSI reference impedance $\boldsymbol{Z}_{\boldsymbol{m}}$. From (5) also follows the condition of practical realizability of the equilibration algorithm: the components R_{m}, X_{m} should have the opposite character to the respective components R_{x}, X_{x} of the measured impedance $\boldsymbol{Z}_{\boldsymbol{x}}$.

III. The measuring circuit

Practical implementation of the measuring process is possible in the series RMC (fig. 2.). It is constituted by the measured impedance $\boldsymbol{Z}_{\boldsymbol{x}}$ connected in series with the virtual impedance Z_{m} reproduced on the poles of MSI and commanded by digital values D_{r}, D_{x}. The measuring circuit is supplied by current $\mathbf{I}_{\mathbf{G}}$ from the signal generator G. The voltage $\mathbf{U}_{\mathbf{d}}(2)$ is used by FNO for command the equilibration process.

Fig. 3. Vector diagram of the measuring circuit.
On fig. 3 is presented the vector diagram of the measuring circuit for the case of series equivalent circuit of impedance Z_{X} and inductive character of it. For convergence of the measurement, as follows from the diagram, MSI will reproduce an reference impedance Z_{M} with opposite character of components $\mathrm{R}_{\mathrm{M}}, \mathrm{X}_{\mathrm{M}}$ to the character of measured components R_{x}, X_{x} respectively. In the state of equilibrum the components $\mathrm{R}_{\mathrm{M}}, \mathrm{X}_{\mathrm{M}}$ take values $\mathrm{R}_{\mathrm{M} 0}, \mathrm{X}_{\mathrm{M} 0}$ wich satisfies the equilibrum condition (3).

IV. IMPEDANCE SIMULATOR

The most important unit of the resonant measuring circuit is the impedance simulator (MSI), executing the function of reference element. The term "metrological" applied to it denote some specifical requirements to this unit determined by metrological assistance of measurements. Amount them [5]:

- Low error and high stability of reproduced impedances;
- The known and warranted value of systematic error of the reproduced impedance;
- Possibility of the impedance components separate regulation ;
- Digital control.

The mentioned requirements are satisfied by I-MSI synthesied by the formal - structural method (fig. 4).

Fig. 4. The conversion algorithm for synthesis of I-MSI.
The current $\mathbf{I}_{\mathbf{i}}$ is converted into the voltage $\mathbf{U}_{\mathbf{1}}$, used for creation the voltage drops on the active $\left(\mathbf{U}_{\mathbf{R}}\right)$ and on the reactive $\left(\mathbf{U}_{\mathbf{x}}\right)$ components of the reproduced impedance $\mathbf{Z}_{\mathbf{i}}$. The turn of the voltage $\mathbf{U}_{\mathbf{1}}$ phase on the angle 90° with consequent regulation of its magnitude at the factor N_{X} for creation the voltage $\mathbf{U}_{\mathbf{X}}$ are used. Only the regulation of magnitude \mathbf{U}_{1} on factor N_{R} for creation U_{R} is applied. The voltages $\mathbf{U}_{\mathbf{R}}$ and $\mathbf{U}_{\mathbf{X}}$ are summarized, forming the voltage $\mathbf{U}_{\mathbf{i}}$, which, in conjunction with the current $\mathbf{I}_{\mathbf{i}}$, form the reproduced impedance $\mathbf{Z}_{\mathbf{i}}$.

Presented above algorithm of information conversion is realized in the block - diagram of the impedance simulator represented in the fig. 5.

Fig. 5. The structure of I-MSI.
The current - voltage converter IUC is applied for conversion of the current $\mathbf{I}_{\mathbf{i}}$ into voltage $\mathbf{U}_{\mathbf{1}}$:

$$
\begin{equation*}
\mathbf{U}_{\mathbf{1}}=\mathbf{I}_{\mathbf{i}} \cdot \mathrm{R}-\mathbf{U}_{\mathbf{i}} \tag{6}
\end{equation*}
$$

where R - the conversion factor of the converter I / U. To obtain algorithmically correct dependence between the current $\mathbf{I}_{\mathbf{i}}$ and the voltage $\mathbf{U}_{\mathbf{1}}$ by elimination of effect of a stray feedback [5], the differential amplifier DA is applied. The voltage on it output:

$$
\begin{equation*}
\boldsymbol{U}_{I}=\boldsymbol{I}_{\boldsymbol{i}} \cdot R_{C}-\boldsymbol{U}_{\boldsymbol{i}}+\boldsymbol{U}_{\boldsymbol{i}}=\boldsymbol{I}_{\boldsymbol{i}} \cdot R_{C} \tag{7}
\end{equation*}
$$

For creation of the phase shift 90° and for regulation of voltages - the phase shifter and the programmable amplifiers PA1, PA2 are used. Formed with these elements the voltages $\mathbf{U}_{\mathbf{R}}, \mathbf{U}_{\mathbf{X}}$ are equal respectively:

$$
\begin{gather*}
\boldsymbol{U}_{\boldsymbol{R}}=N_{R} \cdot \boldsymbol{U}_{\boldsymbol{I}}=N_{R} \cdot R_{C} \cdot \boldsymbol{I}_{\boldsymbol{i}} \tag{8}\\
\boldsymbol{U}_{\boldsymbol{X}}=N_{X} \cdot \boldsymbol{U}_{\boldsymbol{I}} \cdot j \sin 90^{\circ}=j N_{X} \cdot R_{C} \cdot \boldsymbol{I}_{\boldsymbol{i}} \tag{9}
\end{gather*}
$$

The summering amplifier SA sum the voltages $\mathbf{U}_{\mathbf{R}}, \mathbf{U}_{\mathbf{X}}$ and forming the voltage $\mathbf{U}_{\mathbf{i}}$ applied to the input of the simulator:

$$
\begin{equation*}
\mathbf{U}_{\boldsymbol{i}}=\boldsymbol{U}_{\boldsymbol{R}}+\boldsymbol{U}_{X}=R_{C}\left(N_{R}+j N_{X}\right) \boldsymbol{I}_{\boldsymbol{i}} \tag{10}
\end{equation*}
$$

The impedance $\mathbf{Z}_{\mathbf{i}}$ reproduced by the simulator on its entering poles is determined:

$$
\begin{equation*}
\boldsymbol{Z}_{i}=\boldsymbol{U}_{\boldsymbol{i}} / \boldsymbol{I}_{i}=R_{C}\left(N_{R}+j N_{X}\right) \tag{11}
\end{equation*}
$$

As follows from (11), the reproduced impedance $\mathbf{Z}_{\mathbf{i}}$ is represented in Cartesian coordinates and allows realizing the separate control of its active and reactive components by change the gain factors $\mathrm{N}_{\mathrm{R}}, \mathrm{N}_{\mathrm{X}}$ of the programmable amplifiers PA1, PA2. From (11) also follows (fig. 6) that the character of the reproduced impedance depend only on the band of variation of N_{R} and N_{X}. If the band of N_{R} is located in the field of positive values and the band of $\mathrm{N}_{\mathrm{X}}-$ in the domain ($-\mathrm{N}_{0} \div+\mathrm{N}_{0}$), the reproduced impedance can have the character of a resistance in a combination with inductive or capacitive component. The case when the both N_{R} and N_{X} have a range of change $\left(-\mathrm{N}_{0} \div+\mathrm{N}_{0}\right)$ is more interesting. As follows from (11), the area of regulation of $\mathbf{Z}_{\mathbf{i}}$ character in this case covers
all complex plane; i. e. $\mathbf{Z}_{\mathbf{i}}$ can have the character of a different combination of the positive or negative resistance with the capacitive or inductive impedance components.

Fig. 6. The various character of the simulated impedance.
All units of I-MSI are implemented on the base of operational amplifiers and precision resistors [6]. In the phase shifter only one precisions capacitance are used, for digital command of the programmable amplifiers are used the DAC.

On the fig. 7 is represented the practical implementation of the designed I-SIM.

Fig. 7. Practical implementation of I-MSI.

V. I-MSI modeling in the Multisim program

In the process of modelling the series resonant circuit in the Multisim program (fig. 8) it was used as a current generator a V1 tension generator with a high internal resistance $R_{1}=10 \mathrm{M} \Omega$. The measured impedance is modelled with the $R_{2}=1 \mathrm{k} \Omega$ resistance and the $C_{1}=5 \mathrm{nF}$ condenser and is connected in series with the V1 generator and the MIS-I [14].

The process of balancing consists of the two stages and it is represented in fig. 9. At B entrance of the oscilloscope it is applied the reference signal from the convertor exit (marked „o"), and at A entrance it is applied the imbalance signal (marked ,,x").

Initially it is modified the active component by adjusting R_{10} and R_{15} potentiometers until it is obtained a 180° dephasing between these signals (fig. 9, a), then at B entrance

Fig. 8 Series resonant circuit modelled in Multisim.
it is applied the signal from V1 tension generator and it is modified the reactive component by means of R_{12} and R_{18} potentiometers till the imbalance signal reaches 0 value (fig. 9 , b).

The active component of the reproduced impedance can be determined with the next relation [15]:

$$
\begin{equation*}
R_{i}=R_{3}\left(R_{10} \cdot c / 100+1\right)[2 \cdot(100-a) / 100-1], \tag{12}
\end{equation*}
$$

where a and c-represent the variation percentage of R_{10} and R_{15} potentiometers. These measurement will have the values $a=76 \%$ and $c=10 \%$ at the circuit balance after the active component. According to relation (12) it is obtained $\mathrm{R}_{\mathrm{i}}=-105,04 \mathrm{k} \Omega$.

The reactive component of the reproduced impedance is determined with the next relation:

$$
\begin{equation*}
X_{i}=R_{3}\left(R_{12} \cdot d / 100+1\right)[2 \cdot(100-b) / 100-1], \tag{13}
\end{equation*}
$$

where b and d represent the variation percentage of R_{12} and R_{18} potentiometers.

These values will have the values $b=58 \%$ and $d=10 \%$ at the circuit complete balance.
According to relation (13) it is obtained $\mathrm{X}_{\mathrm{i}}=-32,32 \mathrm{k} \Omega$. The impedance reproduced by the simulator will have the next value:

$$
\begin{equation*}
Z_{i}=R_{i}+j X_{i}=(-105,04-j 32,32) \mathrm{k} \Omega . \tag{14}
\end{equation*}
$$

The impedance measured in accordance with C_{1} and R_{2} values represents:

$$
\begin{equation*}
Z_{M}=R_{2}+j / 2 \pi f C_{l}=(100+j 31,84) \mathrm{k} \Omega . \tag{15}
\end{equation*}
$$

where f is the G generator signal frequency. Relations (14) and (15) entirely confirm the theoretical analysis [16].

VI. METER OF IMPEDANCE

The meter of impedance is based on serial resonant measuring circuit [10], [11], containing an impedance simulator commanded in current as reference element [12].

The structure of meter of impedance is represented on the fig. 10. The meter of impedance also contains an amplifier A, two comparators C_{1} and C_{2} and the command unit (CU). The A amplifier amplifies the imbalance signal of the resonant circuit, while the C_{2} comparator converts it into rectangular pulses, which serve as imbalance signal $\mathbf{U}_{\mathbf{d e}}$ for the command unit. The voltage in the reference point of the MSI has the same phase as the voltage on the reactive component of the reference impedance. This voltage is also transformed into rectangular pulses by the C_{1} comparator and constitutes the reference signal $\mathbf{U}_{\text {ref }}$ for the command unit. CU performs the resonant circuit balancing by adjusting the active component R_{R} and the reactive component X_{R} of the \mathbf{Z}_{R} impedance reproduced by the MSI.

The measurement process takes place in two steps [13]. At the first step, the command unit installs the minimal value of the active and reactive components of the impedance reproduced by the SIM and adjusts slowly the active component N_{R} till the appearance of a phase shift equal to 0° or 180° between the $\mathbf{U}_{\text {de }}$ and the $\mathbf{U}_{\text {ref }}$ signals. At the second step, the CU adjusts slowly the reactive component X_{R} till the transition of the above mentioned phase shift from 0° to 180° or from 180 to 0 values.

a

Fig. 9. Series resonant circuit balance modelled in Multisim a. Balance after the active component, b. Balance after the reactive component.

Fig. 10. The structure of meter of impedance.
At the completion of the measurement process, the command unit has the information regarding the active R_{R} and reactive X_{R} components of the impedance reproduced by the SIM, which determines the values of the active component R_{X} $=-R_{R}$ and the reactive component $\mathrm{X}_{\mathrm{X}}=-\mathrm{X}_{\mathrm{R}}$ of the measured impedance.

VII. CONCLUSIONS

The impedance measurement using the simultaneous resonance method ensures a high precision, simplicity of the measurement process and its automation. The high precision is determined by the precision of the simulator reproduced impedance.

The use of impedance simulator with independent components adjustment ensures a simple measurement algorithm for impedances of any nature. The balancing of the measurement circuit is completely automatic, which is due to the use of digital-analog converters and exclusion of adjustable reactive elements.

REFERENCES

[1] V. Nastas, M. Scînteianu, The impedance measurement by method of simulated resonance Proceedings of The $8^{\text {th }}$ International Conference OPTIM 2002, Brasov, May 16-17, 2002 vol. 3, pp 683-688..
[2] V. Nastas. Admitance converter. Patent MD 3111. Publ. BOPI nr. 7, 2006, Chishinau
[3] V. Nastas, A. Nastas. Impedance converter. Patent MD 3154. Publ. BOPI nr. 9, 2006, Chishinau
[4] V. Nastas, A. Cazac Simulator de impedanţă metrologică. Meridian ingineresc. Chişinău, nr. 3, 2003 pp 49-54
[5] V. Nastas, Synthesys of impedance simulators for the resonant measuring circuits. Merdian ingineresc. Chişinău, nr. 4, 2002 pp 83-88
[6] V. Nastas, V. Method of impedance components measurements. Patent MD 2086. Publ. BOPI nr. 4, 2008, Chishinau
[7] V. Nastas, V. Cojocaru. Method of impedance components measurements. Patent MD 3577. Publ. BOPI nr. 4, 2008, Chishinau
[8] Dostal J. Operational amplifiers Ed Elsevier Scientific Publishing Comi, New York, 1981, 512 p.
[9] V. Nastas, Impedanţmetru in coordinate Carteziene Proceedings of the $2^{\text {nd }}$ International Conference Telecommunications, Electronics and Informatics ICTEI 2008, Chişinau, May 15-18, 20008, vol. 2, pp 207210.
[10] Nastas V. Polar - Coordinates Impedance Simulators and Polar Coordinates Impedance Meter Proceedings of The $9^{\text {th }}$ International Conference „OPTIM-2004" Braşov, May 13-14 2004, Vol IV pp. 89-96.
[11] V. Nastas, P. Nicolaev Măsurarea impedanţei în coordinate Carteziene prin metoda rezonanţei simulate Proceedings of the $6^{\text {th }}$ International Conference on Microelectronics and Computer Science ICMCS 2009, Chişinău, October 1-3, 2009 pp 65-68.
[12] V. Nastas, Aspects of application of the impedance simulators for impedance measurement Proceedings of the $6^{\text {th }}$ International Conference on Microelectronics and Computer Science ICMCS 2009, Chişinău, October 1-3, 2009 pp 61-64.
[13] Nastas V., Nicolaev P., Impedancemeter with simulated resonance, Proceedings of The $6^{\text {th }}$ International Conference on Electrical and Power Engineering, Vol. II, Iaşi, 2010, pp 297-300;
[14] Nastas V., Nicolaev P., Topological modelling of the metrological impedance simulators, Annals of the University of Craiova, Electrical Engineering series, No. 33, 2009, pp 154-158
[15] Nicolaev P., Modelarea topologică a simulatoarelor de impedanţă in coordonate carteziene, Proceedings of The $3^{\text {nd }}$ International Conference Telecommunications, Electronics and Informatics, Vol. II, Chişinău, 2010, pag 264-267;
[16] Nicolaev P., Optimizarea simulatorului de impedanţă in coordonate Carteziene, Conferința Tehnico-Ştiinţifică a colaboratorilor, doctoranzilor şi studenţilor, Vol I, Chişinău, 2009, pag 109-110;
[17] Nastas V., Nicolaev P. Methods and devices with simulated resonance for impedance measurement. In: Catalog of the European exhibition of creativity and innovation EUROINVENT 2013, Iaşi, Editura Universităţii Al. Ioan Cuza, 2013, pp 71.

