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Abstract – Peierls transition in organic crystals of TTF-TCNQ 

type is studied in 3D approximation. For a more complete 

description of the crystal model, two the most important electron-

phonon interactions are considered. The transition behavior is 

investigated in different cases, when the conduction band is filled 

up to a quarter of the Brillouin zone and the dimensionless Fermi 

momentum kF = /4 and when the carrier concentration varies 

and kF = /4 ± δ, where δ represents the variation of the Fermi 

momentum, kF. In all cases the critical temperature of the 

transition is determined.            

Key words – Peierls transition, 3D physical model of TTF-

TCNQ, polarization operator, Peierls critical temperature.  

I. INTRODUCTION 

In the last years researchers attract more and more attention 

to the study of organic materials. It is observed a special 

interest in applications of quasi-one-dimensional (Q1D) 

organic materials for thermoelectric devices. If the parameters 

of these crystals will be optimized then they will have much 

better thermoelectric properties than those known so far (see 

[1] and references therein).  

One of the best studied organic crystal is that of 

Tetrathiafulvene–Tetracyanoquinodimethane (TTF-TCNQ) 

type. There are different methods to determine the values of 

certain parameters of these materials. In this paper, we 

propose to use the Peierls structural transition phenomenon for 

this aim. The Peierls transition is currently studied in many 

papers (see [2-4] and references therein). 

In the previous papers [5, 6] the Peierls structural transition 

in Q1D crystals of TTF-TCNQ was investigated in a 1D 

physical model of the crystal. It was studied Peierls transition 

in the case when the conduction band is half filled and the 

Fermi dimensionless quasi momentum is kF = /2 and also, it 

was analyzed the case when the concentration of conduction 

electrons is reduced and the band is filled up to a quarter of the 

Brillouin zone, kF = /4, [6]. The renormalized phonon 

spectrum has been calculated for different temperatures. The 

Peierls critical temperature was established in the both cases. 

In [7-9] the Peierls transition was investigated in a 2D 

physical model for the same crystals. The polarization 

operator as function of temperature was calculated 

numerically for different parameters. It was determined the 

temperature of the transition.  

In this paper we apply a 3D physical model of the crystal. 

For a complete description, two the most important electron-

phonon interactions are considered. One of them is of 

deformation potential type and the other is similar to that of 

the polaron. The axis x is directed along conductive TCNQ 

molecular chains and y, z in transversal directions. The ratios 

of amplitudes of the second interaction to the first one in the x, 

y and z directions are characterized by the parameters γ1, γ2 

and γ3, respectively. The analytic expression for the phonon 

polarization operator is obtained in the random phase 

approximation. Peierls transition is investigated when the 

conduction band is filled up to a quarter of the Brillouin zone 

and the dimensionless Fermi momentum is kF = /4 for 

different values of parameters d1 and d2 which represents the 

ratio of the transfer energy in the transversal y and z directions  

to the transfer energy along x direction of conductive chains. 

The polarization operator as a function of temperature is 

calculated for different values of δ, where δ is the increase or 

the decrease of the Fermi momentum, kF, determined by the 

increase or the decrease of carrier concentration. The Peierls 

critical temperature Tp is determined for different values of the 

dimensionless Fermi momentum kF ± δ.  

II.  THREE-DIMENSIONAL CRYSTAL MODEL 

The crystal of TTF-TCNQ was studied and described in 

many papers. Compound of TTF-TCNQ forms quasi-one-

dimensional organic crystals composed of TCNQ and TTF 

linear segregated chains. The TTF molecules are donors, and 

TCNQ molecules are strong acceptors. Because the 

conductivity of TTF chains is much lower than that of TCNQ 

chains, we can neglect them in the first approximation. Thus, 

in this approximation, the crystal is composed of strictly one-

dimensional chains of TCNQ that are packed in a three-

dimensional crystal structure. The crystal lattice constants are 

a = 12.30 Å, b = 3.82 Å, c = 18.47 Å, b is in the chains 

directions. 

The Hamiltonian of the crystal was described in [8, 9] for 

the 2D physical model. Now it has the form: 
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     In Eq. 1, ( ) k represents the energy of the electrons with 

3D quasi-wave vector k and projections (kx, ky, kz). In Eq. 1 

ak
+
ak are the creation and annihilation operators of a 

conduction electron. 

    The second term in the Eq. 1 is the energy of longitudinal 

acoustic phonons with three-dimensional wave vector q and  

projections (qx, qy, qz) and with frequency ωq. In Eq. 1 bq
+
bq 

are the creation and annihilation operators of an acoustic 

phonon.  

 The third term in Eq. 1 describes the electron-phonon 

interaction. It contains two important mechanisms. The first 

one is of deformation potential type and is determined by the 

fluctuations of energy transfer w1, w2 and w3, due to the 

intermolecular vibrations (acoustic phonons). The coupling 

constants are proportional to the derivatives 1w , 2w  and 3w  

of w1, w2 and w3 with respect to the intermolecular distances, 

01 w , 02 w , 3 0w  . The second mechanism is similar to 

that of polaron.  

The square module of matrix element of electron-phonon 

interaction is represented in the following form: 

       )/(2),(
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      2 2
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In Eq. 2, M  is the mass of the molecule, N  is the number 

of molecules in the basic region of the crystal; parameters γ1, 

γ2, and γ3 describe the ratio of amplitudes of polaron-type 

interaction to the deformation potential one in the x, y and z 

directions. 

The analytic expression for the phonon polarization 
operator is obtained in the random phase approximation. The 

real part of the polarization operator is presented in the form: 
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where A(k,q) is the matrix element of electron-phonon 

interaction presented in Eq. 2, ε(k)  is the carrier energy, kn  is 

the Fermi distribution function, and ħ is the Planck constant. 

The critical temperature of Peierls transition is determined 

from the condition that at this temperature the renormalized 

phonon frequency Ω(q) is diminished up to zero, i.e. Ω(q) = 0. 

It means   

 

0),(Re1  q .                                (4) 

      

where Re ( , ) q  was represented in Eq. 3. 

III. RESULTS 

The critical temperature of Peierls transition is determined 

from Eq. 4, when Ω = 0, and qx = 2kF, qy = 2kF, qz = 2kF. The 

polarization operator as a function of temperature was 

calculated  for different values of  parameter d1 and a certain 

value of parameter d2, where d1 = w2/ w1 = 2w / 1w  , and  d2 = 

w3/w1 = 3w / 1w . Accordingly, it was determined the 

polarization operator as function of temperature for different 

values of kF. It was analyzed different cases when kF = /4 and 

when kF ± δ. 

Computer modeling was performed for the following 

parameters: w1= 0.125 eV, 
'
1w  = 0.22 eVÅ

-1, a = 12.30 Å, b = 

3.82 Å, c = 18.47 Å. The sound velocity at low temperatures is 

vs1 = 3.4 ·10
5
 cm/s along chains, vs2 = 5.25·10

5
 cm/s in a 

direction and vs3 = 5.25·10
5
 cm/s in c direction [10], M = 

3.74·10
5
 me (me is the electron rest mass), d1 = 0.015 and d2 = 

0.01, γ1 = 1.28, γ2 and γ3 are determined from the relations:  

γ2 = 32· γ1·b
5
/(a

5
· d1) and γ3 = 32· γ1·b

5
/(c

5
· d2). 

In Figs. 1, 2, 3 (the polarization operator is named Polar) 

the results of calculation are presented. From all figures one 

can determine the transition temperatures from the 

intersections of calculated curves with the horizontal line at 

1.0. 

In Fig. 1 it is presented the case when kF = /4 and d2 = 

0.01. The continuous, dash, dotted and dash-dotted lines 

correspond to d1 = 0.015, 0.02, 0.025 and 0.04, respectively. 

The value d1 = 0.015 is estimated for real crystals of TTF-

TCNQ.    

From this graph it is observed that with the increase of the 

parameter d1, the Tp strongly decreases. For d1 = 0.015, Tp 59 

K as it was obtained experimentally. For d1 = 0.02, Tp 53 K; 

for d1 = 0.025, Tp 43 K and for d1 = 0.04 the Peierls transition 

disappears. Thus, even with a small increase of the three-

Fig. 1. The polarization operator as a function of 
temperature, for different values of d1 and d2 = 0.01 and 

kF = /4. 

 



5
th

 International Conference “Telecommunications, Electronics and Informatics” ICTEI 2015 
 

 

Chisinau, 20—23 May 2015  
 

– 203 – 

dimensionality the transition temperature decreases 

considerably. This is explained by the fact that the Peierls 

structural transition is characteristic for crystals with very 

pronounced quasi-one-dimensional properties. 

In Figs. 2, 3 it is shown the case when d1 = 0.015 and d2 = 

0.01, but kF is different. The continuous, dash, dotted and 

dash-dotted lines correspond to δ = 0 (kF = /4), δ = 0.016 (~ 2 

% variation of kF), δ = 0.031 (~ 4 % variation of kF) and δ = 

0.047 (~ 6 % variation of kF), respectively. In Fig. 2 it is 

presented the case when the conduction band is filled up to 

slightly more than  a quarter of the Brillouin zone and the 

Fermi momentum increase with δ, so kF = /4 + δ. It is seen  

that with the increase of the parameter δ the Tp decreases. For 

δ = 0, Tp  59 K; for δ = 0.016, Tp  52 K; for δ = 0.031, Tp  

46 K and for δ = 0.047, Tp  37 K. If we will increase more the 

carrier concentration the critical temperature Tp will be lower, 

and for a certain value of δ the Peierls transition will not take 

place. 

In Fig. 3 it is presented the case when Fermi momentum 

decrease with δ and kF = /4 - δ. In this case for δ = 0, Tp  59 

K; for δ = 0.016, Tp  66 K; for δ = 0.031, Tp  73 K and for δ 

= 0.047, Tp  80 K. It is observed that with decrease of carrier 

concentration the Peierls critical temperature increases. 

IV. CONCLUSIONS 

The Peierls transition is studied in quasi-one-dimensional 

organic crystals of TTF-TCNQ type in 3D approximation. The 

polarization operator as a function of temperature is calculated 

in the random phase approximation for different values of the 

parameters . It was observed that even with a small increase of 

the three-dimensionality the transition temperature decreases 

considerably. Thus, it means that the Peierls structural 

transition is characteristic for crystals with very pronounced 

quasi-one-dimensional properties. 

 Also, it was studied the behavior of Peierls transition when 

the carrier concentration varies. It was established that with the 

increase of carrier concentration, the Tp decreases and vice 

versa. 
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Fig. 3. The polarization operator as a function of 

temperature, for different values of δ and d1 = 0.015; 

d2 = 0.01; kF = /4 - δ. 

 

Fig. 2. The polarization operator as a function of 
temperature, for different values of δ and d1 = 

0.015; d2 = 0.01; kF = /4 + δ. 

 


