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RNA sequencing (RNA-seq) has become an exemplary technology in modern

biology and clinical science. Its immense popularity is due in large part to the

continuous efforts of the bioinformatics community to develop accurate and

scalable computational tools to analyze the enormous amounts of transcriptomic

data that it produces. RNA-seq analysis enables genes and their corresponding

transcripts to be probed for a variety of purposes, such as detecting novel exons or

whole transcripts, assessing expression of genes and alternative transcripts, and

studying alternative splicing structure. It can be a challenge, however, to obtain

meaningful biological signals from raw RNA-seq data because of the enormous

scale of the data as well as the inherent limitations of different sequencing

technologies, such as amplification bias or biases of library preparation. The

need to overcome these technical challenges has pushed the rapid

development of novel computational tools, which have evolved and diversified

in accordance with technological advancements, leading to the current myriad of

RNA-seq tools. These tools, combined with the diverse computational skill sets of

biomedical researchers, help to unlock the full potential of RNA-seq. The purpose

of this review is to explain basic concepts in the computational analysis of RNA-

seq data and define discipline-specific jargon.
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1 Introduction

High-throughput DNA sequencing technologies, including

next-generation sequencing and the newly emerging third-

generation sequencing, enable the gene sequences of living

organisms to be probed in a cost-effective manner (Shendure

and Ji, 2008). These sequencing technologies have also been

adapted for RNA sequencing (RNA-seq), which enables the

expression of various RNA populations, including mRNA and

total RNA, to be detected and quantified. RNA-seq has reshaped

biomedical research by expanding researchers’ ability to analyze

a vast range of biological data (Kukurba and Montgomery,

2015). To derive biological insights from RNA-seq data,

researchers need to understand the steps involved in RNA-

seq analysis and select appropriate tools to answer their

research question.

FIGURE 1

Overview of RNA-seq. RNA-seq is a process of creating short sequencing reads from RNA molecules. The steps consist of first converting the RNA

(A) into cDNA (B), then (optionally) amplifying the cDNA by PCR (C), and finally fragmenting the cDNA into short pieces (known as fragments). After the

sequencing library (D) is prepared, the fragments are used as input for next-generation sequencing (E). The resulting sequence reads contained in FASTQ

files are then aligned to a reference sequence (F). Modern high-throughput sequencing machines can generate up to 150million reads per run. The

reference sequence, shown as a pink line, is known. The goal of the alignment is to find the locus in the reference sequence with the greatest match to

each read. Reads are shown to align to the specific positions/locations and these mapped locations are recorded.
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Biomedical researchers are often tasked with using computational

methods for RNA-seq analysis, which are typically available wrapped as

software tools and packages. In this review, we provide an overview of

diverse methodologies for RNA-seq analyses that can be used to detect

novel exons and transcripts, quantify gene expression and alternative

splicing, and study alternative splicing structure. We discuss the steps

from the generation of raw data using sequencing technologies to the

effective interpretation and visualization of RNA-seq data using

mapping and quantification techniques. By summarizing the

biological and computational foundations of RNA-seq data

generation, analysis, and software development, we hope this review

will lead to a more deliberate use of existing computational tools.

2 RNA sequencing

RNA-seq uses high-throughput sequencing of nucleic acids to

determine the nucleotide sequence of RNA molecules as well as the

quantities of specific RNA species within populations of RNA

molecules. RNA-seq analysis requires specialized computational tools

that can account for the shortcomings of sequencing technologies,

including the generation of sequencing errors (Le et al., 2013), length

biases (Oshlack and Wakefield, 2009), and fragmentation (Tuerk et al.,

2017). Computational analysis of RNA-seq data has led to many

scientific advances, including novel therapeutic discoveries, detailed

understanding of genetic regulatory regions, and identification of

biomarkers and pathogenic mutations (Han et al., 2015).

Preparation of an RNA-seq library starts with extraction and

isolation of RNA from a biological sample, such as a cell line or a

frozen tissue sample. For RNA-seq performed with short-read

sequencing (see Section 2.1), the isolated RNA is reverse-

transcribed and converted into cDNA, which is then amplified by

polymerase chain reaction (PCR) and fragmented into short

sequences (either before or after PCR) (Prakash and Haeseler,

2017) (Figure 1). After the RNA molecules are processed, the

RNA-seq library becomes the input for a sequencing platform

(Kukurba and Montgomery, 2015), which generates reads

(i.e., the sequenced fragments from the RNA-seq library).

2.1 High-throughput RNA-seq technologies

High-throughput sequencing techniques can derive millions of

nucleotide sequences from an individual transcriptome (Stark et al.,

2019). These nucleotide sequences provide multifold coverage of the

whole transcriptome. High-resolution RNA-seq can identify which genes

are actively transcribed in a sample and quantify the levels at which

alternative transcripts of a gene are transcribed (Gerstein et al., 2007). The

reads generated by different sequencing technologies have lengths

ranging from hundreds of base pairs (usually referred to as short

reads) to thousands of base pairs (referred to as long reads)

(Shendure and Ji, 2008; Haas and Zody, 2010; Pollard et al., 2018).

Illumina, Nanopore, and PacBio are among the most commonly used

high-throughput sequencing platforms (Ye et al., 2015).

Illumina sequencing, considered a next-generation sequencing

technology, is based on sequencing-by-synthesis chemistry and was

first commercialized in 2006 (Shen and Shen, 2019). For Illumina

RNA-seq, isolated RNAs are reverse-transcribed into single-

stranded cDNA, which is then ligated to synthetic adapters,

immobilized on a solid surface, and amplified by PCR. Then, a

reaction mixture is added containing primers, DNA polymerase,

and modified nucleotides. The modified nucleotides have a

fluorescent label that serves as both a reversible terminator of

DNA synthesis and an indicator of which nitrogenous base the

nucleotide contains. As a new strand of DNA is synthesized using

the immobilized cDNA as a template, each incorporated nucleotide

is detected with a charge-coupled device (CCD) camera and identified

by the color of the fluorescent label. The fluorescent label is then

removed, and the next nucleotide is added in a new round of DNA

synthesis. This cycle is repeated until each base in the cDNA is

identified. The sequences of more than 10 million cDNA fragments

can be simultaneously determined in parallel using the Illumina

platform, giving rise to higher sequencing throughput compared

with other sequencing platforms (Morganti et al., 2019; Workflows

for RNA Sequencing, 2023).

Nanopore sequencing, which serves as the basis for theMinION,

GridIOn, and PromethION platforms, was first introduced in

2014 by Oxford Nanopore Technologies. Nanopore sequencing

can produce short or long reads from native DNA and RNA

fragments of any length. Nanopores are very small holes in a

membrane that can be created by pore-forming proteins or by

non-biological means. The Nanopore sequencing method

simultaneously sends an ionic current and a single strand of

DNA or RNA through a nanopore. As the ionic current passes

through each nucleotide that successively occupies the nanopore, it

undergoes disruptions that are unique to the nitrogenous base. The

patterns of disruption in the current can be interpreted to identify

each base in the DNA or RNA strand that passes through the

nanopore. Whereas short-read sequencing technologies such as

Illumina require chemical modification or PCR amplification,

Nanopore technology is capable of sequencing DNA or RNA

without these additional steps, making it a third-generation

sequencing technology (Bharagava et al., 2019).

PacBio sequencing, also known as SMRT (single-molecule, real-

time) sequencing, was introduced in 2010 and generates full-length

cDNA sequences (i.e., long reads) that characterize transcripts of

targeted genes or across entire transcriptomes. Long reads generated

by PacBio are accurate at the scale of a single molecule because they

are generated by a process of circular consensus sequencing, in

which the same cDNA is effectively read many times (Eid et al.,

2009; Vierra et al., 2021). The comparatively high sensitivity of

PacBio can be limited by external factors. For example, PacBio can

produce full-length cDNA during the library preparation step;

however, it can only generate high-quality reads if the target

cDNA is short enough to be sequenced in multiple passes.

Each sequencing technology has inherent advantages and limitations,

so no technology is best suited for all types of RNA-seq analysis (Box 1).

Short-read technologies can generate data with a lower error rate and

higher throughput than long-read technologies; however, the short-read

length makes reconstruction and quantification of the transcriptome

challenging (Korf, 2013; The RGASP Consortium et al., 2013a; The

RGASP Consortium et al., 2013b; Amarasinghe et al., 2020). Long-read

sequencing improves the accuracy of assembly (concatenation of individual

reads to reassemble the transcriptome), or can even eliminate the need for

assembly, as each read can cover an entire transcript. Long-read sequencing

can also be used to produce complete, unambiguous information about

Frontiers in Genetics frontiersin.org03

Deshpande et al. 10.3389/fgene.2023.997383

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.997383


FIGURE 2

Alternative splicing and RNA-seq technologies. The flow of genetic information begins with DNA, which consists of introns and exons. DNA is

transcribed into pre-mRNA and then further processed into mature mRNA by splicing out the introns and leaving the exons glued together. The

mRNA is then translated into a protein. Transcripts with different arrangements of exons can be formed in a process called alternative splicing or

exon skipping. An RNA-seq read is a short sequence sampled from a transcript. Reads are generated using sequencing technologies such as

(A) the Illumina platform, which produces short reads, and the (B) Nanopore and PacBio platforms, which produce long reads. The figure depicts

two scenarios in which uniquely mapped reads are aligned to a reference transcriptome (C) and a reference genome (D), respectively. A few of the

reads are multicolored, indicating that when aligned, they span across an exon-exon junction. Some of the shorter reads (single-colored) are

aligned only to a single exon and do not span across the junction. TSS, transcription start site; TES, transcription end site.
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alternative splicing, gene structure, regulatory elements, and coding regions.

Long-read sequencing currently has a higher error rate and lower

throughput compared with short-read sequencing, however (Figure 2)

(Sedlazeck et al., 2018; DeMaio et al., 2019;Mahmoud et al., 2019). Hybrid

approaches that combine long reads and short reads can eliminate the

limitations of each separate approach and can be used to accurately

quantify and assemble known and novel transcripts (De Maio et al.,

2019; Amarasinghe et al., 2020; Berbers et al., 2020), but they also have

higher costs and more material requirements. Data gathered using

Illumina, Nanopore, and PacBio sequencing technologies can be used

to address a wide range of research areas, including transcriptome analysis,

population-scale analysis, and clinical research (Wang et al., 2021).

3 RNA-seq data science: From raw data
to effective interpretation

RNA-seq is multifaceted and can be used to uncover and

expound new insights on, for example, a dysregulated gene or

defective protein that has a downstream effect leading to a

disease state (Costa et al., 2010). Computational analysis of RNA-

seq data is central to decoding the biological complexities in the

transcriptomes of living organisms, including humans (Costa et al.,

2010). Here, we describe the major steps of computational analysis

of RNA-seq data, beginning from the processing of raw data to the

uncovering of biological insights.

3.1 Quality control of raw data

During the sequencing process, errors are introduced into reads

that can bias the results of downstream analyses. Read trimming and

data quality control to filter and assess the quality of raw reads (Yang

et al., 2013) are therefore essential after the reads have been

generated. Read trimming removes adapter sequences and

portions of reads with low accuracy, as indicated by a low

PHRED quality score (Martin, 2011; Dodt et al., 2012; Bolger

et al., 2014). In addition, computational error correction can be

applied to reduce the number of sequencing errors (Lima et al., 2020;

Mitchell et al., 2020).

4 Read alignment

Read alignment is an essential step in RNA-seq downstream

analysis. RNA-seq data typically lack information about the order

and origin of the reads, including the specific part, homolog, or

strand of the genome from which they originate. Computational

alignment of the reads to an annotated reference transcriptome

can establish where on the genome the reads originated (Figure 1)

(Brown, 2002). Alignment of the reads to a reference sequence

also reveals how many reads overlap each position on the

reference sequence, which is known as the coverage. There are

several bioinformatics tools (e.g., GenomeScope (Vurture et al.,

2017), Smudgeplot (Ranallo-Benavidez et al., 2020), and

Merqury (Rhie et al., 2020)) that can estimate the coverage

without mapping the reads to a reference sequence (Ranallo-

Benavidez et al., 2020; Rhie et al., 2020), as most of the overlap

between reads is preserved with or without the reference

sequence (Vurture et al., 2017) (Figure 1).

Alignment of RNA-seq reads to a complementary reference

sequence can help determine which transcripts are expressed and

the degree to which they are expressed, but the alignment

approach is ill-equipped to discover transcripts that are

missing from the reference sequence. Furthermore, even the

human reference transcriptome remains incomplete (Nellore

et al., 2016). Novel transcripts can be discovered by

performing de novo assembly of RNA-seq reads to generate an

Box 1 | Advantages and limitations of short and long reads

i. Error rate—Short read sequencing technologies have a lower error rate when compared to long read sequencing technologies (a, b).

ii. Throughput—The throughput of long read sequencing technologies is typically lower than the throughput of short read sequencing

technologies (c).

iii. Alignment—Short reads suffer from multi-mapping issues, whereas longer reads, by nature of having more information, can be more accurately

mapped to its origin. Due to a high error rate, pairwise alignment between the read, the reference transcriptome, and/or genome is more challenging for

long reads compared to short reads.

iv. Assemble novel transcripts—Longer reads are preferred for de novo assembly, because theymake the assembly step efficient. Most short reads do

not span the shared region or shared exon junction, making the assembly step ambiguous. Full-length transcript sequencing eliminates the need for

assembly.

v. Estimate transcripts and gene expression—Shorter reads are preferred for quantification of transcripts due to their higher throughput. However,

assigning short reads to the transcripts requires more advanced probabilistic and statistical approaches. Longer reads have lower throughput, but they

can usually cover the entire transcript and make determination of the transcript for each read a straightforward process.
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entire transcriptome without alignment to a reference sequence;

however, this can be challenging and requires large amounts of

computational time and resources (Grabherr et al., 2011) As an

alternative, RNA-seq reads can be aligned to curated databases of

known transcripts such as RefSeq (Pruitt et al., 2007), UCSC

genome browser, Ensembl, GENCODE (GENCODE, 2022), and

AceView (Larsson et al., 2005), and reads that fail to align to

known transcripts can then be aligned to a reference genome to

identify novel transcripts.

One computational challenge in aligning RNA-seq reads to a

reference genome is the handling of spliced junctions, where one

part of the read maps to the end of one exon and the rest of the

read maps to another exon, which may be located thousands of

base pairs away from the first exon. Spliced junctions are the

result of the removal of non-coding parts of a gene, called introns,

and the splicing together of the coding parts of the gene, called

exons. Genes can generate multiple mRNA transcripts through

alternative splicing. As a result, exons are combined or skipped in

different ways and have alternative start/end sites. These varying

combinations create different transcripts, known as isoforms,

from the same gene. As a biological process, alternative

splicing is evolutionarily advantageous, because it enables the

production of different protein variants from the same genetic

information (Figure 2). When genome annotations are available,

existing exon structures can be used to map reads across known

splice junctions; however, this knowledge-guided approach may

be biased towards mapping only known junctions while failing to

discover novel ones.

In cases where reads align to multiple transcripts, it might not be

possible to discern from which transcript the reads originate. Splice

alignment software packages (Wang et al., 2010; Dobin et al., 2013;

Kim et al., 2019) are designed to minimize multi-mapping by

correctly aligning reads across the exon–intron junctions of the

reference genome (Figure 2). This can be a crucial first step of

reference-guided assembly, wherein transcripts that are present in

the sample but not annotated in the reference are assembled using

the spliced read alignments to the reference.

In some instances, reads do not perfectly align with the

reference sequence but instead contain mismatches, which can

be caused either by sequencing errors or by biological variation

such as mutations (Mitchell et al., 2020). RNA-seq alignment

tools are typically equipped with a customizable threshold for

tolerating mismatches in the alignment; however, it is important

to distinguish between sequencing errors and real variation

between the transcripts and the reference sequence.

Specialized computational tools (Abate et al., 2014; Fernandez-

Cuesta et al., 2015) can identify and classify genes using strategies

such as de novo assembly (assembly of reads without alignment to

a reference sequence), identification of reads that span fusion

junctions, and filtering of gene fusion candidates based on

various criteria.

5 Quantitative analysis of gene
expression

RNA-seq enables quantitative analysis of gene expression at the

level of alternative transcripts. The sequence fragments derived from

mRNA can reveal which genes are expressed and how strongly they

are expressed. Additionally, differential expression (DE) analysis can

show how expression levels change under different conditions or

between different populations.

5.1 Estimation of transcript and gene
expression

Computational methods can estimate expression levels of

genes and transcripts by counting the number of reads that

match individual reference transcripts. Tools like HT-Seq-

count, Rcount, and featureCounts (Liao et al., 2014; Anders

et al., 2015; Schmid and Grossniklaus, 2015) are highly robust

and widely used for such analyses; however, counting-based

tools are ill-equipped to estimate the expression levels of

different isoforms of expressed genes using short reads, as

the majority of isoforms share a large percentage of exons

and cannot be uniquely assigned to individual transcripts

(Figure 2). The shorter the reads, the greater the probability

that they will match multiple transcripts. A conservative

approach to tackle this challenge is to consider only the

reads that uniquely map to a single transcript (e.g., reads

that map to transcript-specific splicing junctions or exons)

(Conesa et al., 2016). An alternative approach that utilizes a

larger fraction of the RNA-seq reads is to probabilistically

assign reads to the isoforms from which they likely

originated (Li and Dewey, 2011; Nicolae et al., 2011; Trapnell

et al., 2012; Pertea et al., 2015).

A number of approaches quantify gene expression using

complete read alignment, which requires large amounts of

computational power and time to compare each read to

reference sequences base-by-base. Pseudoalignment methods

have been developed as an alternative approach that has a

much smaller computational burden. These methods forgo the

base-by-base accuracy of alignment and determine an

approximate alignment of the reads on the genome, which is

still sufficiently accurate to quantify gene expression.

Pseudoalignment algorithms leverage a pre-compiled library of

unique k-mers (exact substrings of length k) contained in known

transcripts and assign reads to transcripts by counting the k-mer

occurrences in the reads, thus achieving up to 100 times faster

quantification compared with alignment-based methods (Bray

et al., 2016). Sailfish (the pioneer of pseudoalignment) (Patro

et al., 2014), Salmon (Patro et al., 2017), and Kallisto (Bray et al.,

2016) each utilize pseudo-alignment-based algorithms to

quantify the isoforms of expressed transcripts (Alser et al.,

2020), each providing comparable accuracy in expression

quantification. A more detailed explanation of these tools can

be found in Supplementary Material S2.

5.2 Differential gene expression analysis

After gene and transcript expression levels are estimated,

statistical approaches are employed to detect differences in

expression levels across experimental groups (e.g., different

sexes or cohorts exposed to different environmental
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conditions) (Conesa et al., 2016). Expression levels measured for

the same gene under different conditions cannot be directly

compared, as each experiment represents a statistical sample,

giving only the relative mRNA levels in comparison to the other

mRNAs present in the sample. In addition, mRNA levels change

over time, and reads can align to multiple places, making exact

quantitation difficult. The purpose of statistical testing is to

ensure that an observed change in mRNA levels is due to an

actual difference in expression between experimental

conditions.

To test whether the expression of a given gene is different

between two groups, measurements are repeated in multiple

replicates of the same experiments, and then a statistical test is

applied. Through this process, the variation in expression between

different conditions can be compared to the variation within

replicates of the same condition. Each statistical test is based on

a null hypothesis that the gene expression is the same between

groups, which is usually true for the majority of genes. The value that

indicates whether there is likely to be a true difference between

groups is called the p-value, which gives the probability of observing

a particular difference, or a more extreme difference, assuming that

the null hypothesis is true. Small p-values give strong evidence

against the null hypothesis. Genes with low p-values are considered

to be differentially expressed, and the null hypothesis is rejected for

those genes. The typical threshold for rejection of a null hypothesis is

a p-value less than 0.05, but this cutoff is arbitrary and might need to

be altered depending on how noisy the data are (Liu et al., 2006;

Glaus et al., 2012; Shastry et al., 2020).

There are two types of error associated with statistical tests: Type

I error and Type II error. A Type I error occurs if a test rejects a true

null hypothesis. A Type II error occurs if a test accepts a false null

hypothesis. The p-value indicates the probability of making a Type I

error in a given test. For example, if the p-value threshold is set at

0.05 (i.e., 5%), and 20,000 genes are being tested, then 1,000 genes

(5% · 20,000) will be wrongly considered to be differentially

expressed because of Type I errors. There are two approaches to

control Type I errors, also referred to as false positives. One

approach is to control the family-wise error or the probability

that there is at least one Type I error among all the rejected null

hypotheses. The other approach is to control the false discovery rate,

or the proportion of Type I errors among all the rejected null

hypotheses. Both approaches involve calculation of an adjusted

p-value (p-adj) for each gene, which can then be used for further

analysis (Jafari and Ansari-Pour, 2018).

It is important to account for noise which includes sources of

variation that are unrelated to the experimental variable of interest,

when performing differential expression analysis. For example,

batch effects, or confounding factors arising from samples being

tested on different days, by different laboratory technicians, or in

different laboratories (technical batch effects), can result in

unwanted differences in measured values. In addition, variation

due to intrinsic factors such as high GC content or gene body

coverage evenness (biological batch effects) can affect the

quantification of technical replicates of a sample. Existing

statistical methods can effectively detect and adjust for hidden

confounding factors (Li et al., 2014).

Other approaches to differential expression analysis that can

produce more accurate results than conventional p-adj values use

different metrics such as the minimum significant difference or

the generalized linear model (GLM) framework (McCarthy et al.,

2012), where a combination of p-values and log fold changes is

applied to identify the genes or transcripts with the most

significant differences in expression. Another alternative

approach is the probability of positive log ratio (PPLR) (Liu

et al., 2006), which was initially developed for microarray

analysis and subsequently adjusted for RNA-seq data (Glaus

et al., 2012). The PPLR uses a Bayesian hierarchical model to

express the probability that the ratio of expression levels between

two conditions is positive (i.e., the expression is upregulated in

the second condition relative to the first). A PPLR value close to

1 means there is a very high probability that a given transcript is

upregulated in the second condition (Liu et al., 2006). When the

PPLR value is close to 0, there is a very low probability of

upregulation, and consequently a high probability of

downregulation, in the second condition relative to the first.

There is no direct relation between PPLRs and p-values, as they

look at the problem from different perspectives (i.e., in the

probabilistic approach an uncertainty propagation between

successive stages of analysis is possible and desired). Both

approaches are capable of identifying large numbers of

differentially expressed genomic features. If the number of

differentially expressed features is too large, a more stringent

cutoff for statistical significance can be applied to make the

analysis more manageable.

Depending on the type of normalization performed on RNA-

seq data, machine-learning approaches can be used to identify

differentially expressed genes with classification models based on

discrete or continuous distributions. Machine learning

approaches have been used to manage, model, and categorize

biological data, enabling high-impact discoveries in the field of

biomedicine (Shastry et al., 2020). RNA-seq data are discrete in

nature. The two most common ways to normalize RNA-seq data

for machine learning-based differential expression analysis are to

model the data as a Poisson or negative binomial distribution or

transform the data to be similar to a distribution of microarray

data. The Bioconductor MLSeq (Goksuluk et al., 2019) package is

a comprehensive source of combinations of different

normalization and machine-learning methods for RNA-seq

analysis. After the data are normalized, genes or alternative

transcripts (features) can be ranked, or standard sample

classification can be performed, and the features that make the

strongest contributions to the assignment of samples to

particular groups can be extracted (Goksuluk et al., 2019).

With a deep learning approach, it is also possible to predict

differences in gene expression from histone modification signals

(Sekhon et al., 2018).

Differential expression analysis can be complemented by

expression quantitative trait loci (eQTL) analysis, which

formally compares the expression levels of a given gene

between groups with different copy numbers (0, 1, or 2) of the

minor allele. Each read alignment technique produces different

results, which may impact which genes are identified as

differentially expressed (Castel et al., 2015). The power to

detect differentially expressed genes and eQTLs depends on

the sequencing depth of the sample, the minor allele

frequency of the gene being tested, the expression level of the
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gene, and the length of the gene (McKenna et al., 2010). The

magnitude of the eQTL can be quantified by the log allelic fold

change (Hu et al., 2015), and its significance is tested using a

binomial distribution or over-dispersed generalizations

(Kumasaka et al., 2016; Knowles et al., 2017; Mohammadi

et al., 2019; Zou et al., 2019; Wang et al., 2020). Some of the

popular approaches to detect eQTLs use transformation and

linear regression models (Shabalin, 2012; Ongen et al., 2016;

Taylor-Weiner et al., 2019).

The results of differential expression analyses can be validated

using independent techniques such as quantitative PCR (qPCR),

which is statistically assessable (Skelly et al., 2011). Measurements of

gene expression obtained by qPCR are relatively similar to

measurements obtained by RNA-seq analysis, where a value can

be calculated for the concentration of a target region in a given

sample (Harvey et al., 2015; Romanel et al., 2015; Xie et al., 2019).

Additional information about quantification of RNA splicing and

splicing QTL (sQTL) analyses can be found in Supplementary

Material S3.

6 Measurement of allele-specific
expression

RNA-seq can measure allele-specific expression (ASE or

allelic expression) to uncover the cis-regulatory effects of

genetic variants (McKenna et al., 2010; Castel et al., 2015;

Raghupathy et al., 2018). ASE represents gene expression

measured independently for the paternal and maternal alleles

of a gene. In a typical RNA-seq experiment, ASE can be measured

only in genes that contain a heterozygous single-nucleotide

polymorphism (SNP) within the transcribed region. This SNP,

referred to as the aseSNP, can be used as a tag to identify reads

that originate from each copy of the gene (Figure 3).

Allelic imbalance—the ratio between paternal and maternal

allele expression—identifies genetic cis-regulatory differences

between two haplotypes. The log allelic fold change can also

be calculated to quantify the magnitude of allelic imbalance (Hu

et al., 2015). An aseSNP is not itself a regulatory variant and

should not induce an imbalanced ASE signal. However, there can

be a bias in ASE data that falsely suggests that the haplotype

carrying the reference allele for the aseSNP has slightly higher

expression across all genes. This issue, known as allelic bias or

reference bias, can be mitigated in two ways: by aligning the

RNA-seq reads to a personalized reference genome that excludes

likely biased sites (Dobin et al., 2013; van de Geijn et al., 2015;

Gao and Zhao, 2018; Kristensen et al., 2019; Ferraro et al., 2020),

or by aggregating the ASE signal from multiple aseSNPs in each

gene (Chen et al., 2021). ASE data can also be used to improve

statistical power for identifying eQTLs (Gao and Zhao, 2018;

Kristensen et al., 2019; Zou et al., 2019; Ferraro et al., 2020) and

to map the causal regulatory variants in eQTL data (Kim and

Salzberg, 2011; Gao et al., 2018; Haas et al., 2019). Furthermore,

ASE data are inherently robust to noise, so they are useful for

identifying gene-by-environment interaction effects (Li, 2013)

or the effects of rare genetic variants on gene expression to

improve diagnostic accuracy for Mendelian diseases (Hoffmann

et al., 2014; Ji et al., 2019).

7 Profiling circular RNA with RNA-seq

Circular RNA (circRNA) is a large class of RNA molecules

with a covalently closed circular structure that plays important

roles in various biological processes and metabolic mechanisms

(Wu et al., 2020). In recent years, a variety of computational tools

have been developed for circRNA study (Gao and Zhao, 2018;

Chen et al., 2021). Identification of circRNAs is based on

detection of reads spanning the circle junction, termed the

back-splice junction (BSJ). Most tools (Cheng et al., 2016;

Zhang et al., 2016; Gao et al., 2018) employ aligners

(Humphreys et al., 2019; Wu et al., 2019; Zheng et al., 2019)

to detect putative back-splicing events from fusion reads or split

alignment results, whereas other splice-aware aligners (Wang

et al., 2010; Zheng and Zhao, 2020) can align circular reads and

detect BSJs directly.

Considering that most circRNAs are derived from exonic

regions (Ji et al., 2019; Wu et al., 2020) where computational

methods cannot accurately distinguish linear and circular reads,

the BSJ read count is the most reliable measurement of circRNA

expression levels. The BSJ read count is inferred from alignment

results, and different filters and statistical strategies have been

employed to improve its accuracy and sensitivity (Mangul et al.,

2019; Zhang et al., 2020). Alternative approaches using

pseudoalignment-based tools for circRNA quantification (Li

et al., 2017) can substantially increase the computational

efficiency compared with regular alignment-based methods.

To compare the expression levels of circRNAs and their host

FIGURE 3

Measuring allele-specific expressionwith RNA-seq. RNA-seq can

be used to generate allele-specific expression (ASE) data for genes

with a heterozygous single-nucleotide polymorphism in the

transcribed region (aseSNP). The aseSNP enables sequencing

reads to be mapped to the haplotype from which they originate.

Imbalance in ASE data is a functional indicator of a cis-regulatory

difference between the two haplotypes that is driven by heterozygous

regulatory variants. Data from multiple aseSNPs can be aggregated to

improve ASE data quality. The non-coding regulatory variant depicted

here has two alleles inducing higher (H) and lower (L) expression of the

target gene.
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genes, the junction ratio, defined as the ratio of BSJ reads and

linear reads mapped to the BSJ site, is often used for

comparative analysis. Several computational methods have

been developed for accurate estimation of junction ratios

(Reimers and Carey, 2006; The Comprehensive R Archive

Network, 2022). In addition, circRNAs exhibit alternative

splicing patterns, and a number of specific tools have been

developed for circular transcript assembly (Gao et al., 2016;

Zhang et al., 2016; Wu et al., 2019; Zheng et al., 2019), internal

structure visualization (Li et al., 2016; Mose et al., 2016), and

differential expression analysis (Zhang et al., 2020; The

Comprehensive R Archive Network, 2022). Several

comprehensive databases have been constructed for circRNA

annotation and prioritization analysis (Dong et al., 2018; Xia

et al., 2018; Wu et al., 2020).

8 Discussion

As technology advances, RNA-seq methods have become

increasingly popular and have revolutionized modern biology and

clinical applications, driven by continuous efforts of the

bioinformatics community to develop accurate and scalable

computational tools. In addition, advancements in sequencing

technologies have provided an unprecedented ability to analyze a

wide range of biological data, enabling new explorations of novel

and existing biological problems. To increase access to RNA-seq

methods among new users and young scientists, we provided an

overview of the fundamentals of RNA-seq and its associated

computational methods and discussed the advantages and

limitations of various applications.

Computational analysis of RNA-seq data can be used to tackle

important biological problems such as estimating gene expression

profiles across various phenotypes and conditions or detecting novel

alternative splicing on specific exons. Specialized analyses of RNA-seq

data can also help to detect changes in the concentration, function, or

localization of transcription factors that affect splicing and can cause the

onset of neurodegenerative diseases and cancers (Ozsolak and Milos,

2011; Szabo and Salzman, 2016). Some recently developed

computational tools (Xu et al., 2014; Bolotin et al., 2015; Li et al.,

2016; Mose et al., 2016; Mandric et al., 2020) are even capable of

repurposing RNA-seq data to characterize the individual adaptive

immune repertoire and microbiome (Varadhan and Roland, 2008).

Additionally, computational deconvolution can be applied to RNA-seq

data to study cell-type compositions in tissue samples (Melsted et al.,

2017; Kang et al., 2019).

The interdisciplinary nature of RNA-seq applications and

related analytic methods and software development introduces a

host of terms that can challenge researchers in the wider scientific

and medical research communities. The literature on RNA-seq

methods has traditionally assumed that readers are familiar with

the fundamental concepts of RNA-seq and related bioinformatics

analyses (Nariai et al., 2013; Srivastava et al., 2016; Zakeri et al.,

2017; Green et al., 2018; Li et al., 2018; Vaquero-Garcia et al.,

2018). These methods may require diverse computational skills

to be used effectively. A lack of computational skills can therefore

limit the ability of biomedical researchers to unlock the full

potential of RNA-seq, highlighting the need for a review that

explains basic RNA-seq concepts and defines discipline-specific

jargon.
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