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ABSTRACT 
This thesis explores how semantic operators in a semantic algebra can improve vector search in 

Retrieval Augmented Generation (RAG) scenarios. Semantic operators manipulate the meaning of words 

and sentences in a formal, mathematical way, enabling operations that allow for precise comparison and 

manipulation of meaning. These operators are applied practically through the use of Large Language 

Models (LLMs), which decompose, manipulate, and recompose the meaning of words and sentences. The 

decomposed and tagged sentences are then transformed into embeddings that facilitate the search for 

relevant sources within a vector space, which will allow for more control over the search process and the 

retrieval of more relevant sources. 

 

 

  

 

 



 

REZUMAT 
Această teză explorează modul în care operatorii semantici într-o algebră semantică pot îmbunătăți 

căutarea vectorială în scenarii de Generare Augmentată prin Regăsire (RAG). Operatorii semantici 

manipulează sensul cuvintelor și propozițiilor într-un mod formal și matematic, permițând operații care 

oferă posibilitatea de a compara și manipula precis sensul. Acești operatori sunt aplicați practic prin 

utilizarea modelelor de limbaj mari (LLM), care descompun, manipulează și recompun sensul cuvintelor 

și propozițiilor. Propozițiile descompuse și etichetate sunt apoi transformate în embedding-uri care 

facilitează căutarea surselor relevante într-un spațiu vectorial, ceea ce va permite un control mai mare 

asupra procesului de căutare și regăsirea unor surse mai relevante.  
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INTRODUCTION 
The field of semantic algebra has long been a theoretical cornerstone in cognitive linguistics and 

computational semantics. It provides a formal framework for manipulating the meaning of words and 

sentences using algebraic operators. Historically, the concepts of semantic algebra were ahead of their 

time, offering a rigorous mathematical model for semantics that could not be fully realized due to the 

limitations in computational power and data availability. 

With the advent of machine learning, particularly the development of Large Language Models 

(LLMs) and advanced embedding techniques that were developed alongside LLMs, the theoretical 

constructs of semantic algebra can now be put into practice. These advancements have enabled the 

creation of high-quality text embeddings that capture the nuanced meanings of words and sentences, 

making it possible to apply semantic algebra in practical applications. 

One of the most promising applications of this synergy between semantic algebra and machine 

learning is in the domain of vector search. Traditional search engines rely on keyword matching, which 

often fails to capture the true intent behind a query. In contrast, vector search leverages embeddings to 

represent the semantic content of both queries and documents in a continuous vector space. By applying 

semantic algebra to these embeddings, we can perform more sophisticated manipulations and 

comparisons, leading to more relevant search results. 

This thesis explores how the integration of semantic algebra with LLM-generated embeddings can 

enhance vector search, particularly in Retrieval Augmented Generation (RAG) scenarios. By using 

semantic operators to refine and manipulate embeddings, the aim is to improve the accuracy and 

relevance of search results, thereby demonstrating the practical utility of semantic algebra in modern 

computational linguistics. 
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