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Abstract. The natural language processing (NLP) field has witnessed remarkable 

advancements with the advent of large language models (LLMs) like GPT, Gemini, Claude, 

etc. These models are trained on vast amounts of text data, allowing them to generate 

human-like responses for various tasks. However, despite their impressive capabilities, LLMs 
have limitations in their ability to incorporate and reason over external knowledge that is 

not in their training data. This limitation of LLMs is particularly evident in the case of specific 

domain knowledge. This situation has given rise to the concept of retrieval augmented 

generation (RAG), an approach that combines the generative power of LLMs with the ability 
to retrieve and integrate relevant information from external knowledge sources. This 

research attempts to use RAG as a module in an application designed to answer questions 
concerning a specific domain, namely social philosophy/philosophy of management, using 

a published book from the respective domain as an external source.  The paper analyzes the 

mentioned application output, draws conclusions, and traces future directions to improve 

the accuracy of the output.  
 

Keywords: natural language processing; retrieval-augmented generation; large language 

models; domain-specific knowledge; domain-specific text.  
 

Rezumat: Domeniul procesării limbajului natural (NLP) a fost martorul unor progrese 
remarcabile odată cu apariția modelelor de limbaj mari (LLM) precum GPT, Gemini, PaLM, 

Claude și altele. Aceste modele sunt antrenate pe cantități mari de date text, permițându-le 

să genereze răspunsuri asemănătoare omului pentru diferite sarcini. Cu toate acestea, în 
ciuda capacităților lor impresionante, LLM-urile au limitări în capacitatea lor de a încorpora 
și raționa cunoștințele externe care nu sunt în datele lor de formare. Această limitare a LLM-

urilor este deosebit de evidentă în cazul cunoștințelor specifice domeniului. Această situație 
a dat naștere conceptului de retrieval augmented generation (RAG), o abordare care combină 
puterea generativă a LLM-urilor cu capacitatea de a prelua și integra informații relevante 
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din surse externe de cunoștințe. Această cercetare încearcă să utilizeze RAG ca modul într-
o aplicație menită să răspundă la întrebări referitoare la un anumit domeniu, și anume 
filosofia socială/filosofia managementului, folosind ca sursă externă o carte publicată din 
domeniul respectiv. Lucrarea analizează rezultatul aplicației menționate, trage concluzii și 
urmărește direcțiile viitoare pentru a îmbunătăți acuratețea rezultatelor.  

 

Cuvinte cheie: procesarea limbajului natural; generare augmentată de recuperare; modele mari 
de limbaj; cunoștințe specifice domeniului; text specific domeniului.  

 

1. Introduction 

 The field of natural language processing (NLP) has experienced remarkable 

advancements in recent years, largely due to the emergence of large language models (LLMs) 

such as GPT, Gemini, PaLM, Claude, and others. These LLMs have been trained on extensive 

amounts of text data, enabling them to generate responses that closely resemble human-like 

behavior across various tasks. However, despite their impressive capabilities, LLMs have 
certain limitations when it comes to incorporating and reasoning over external knowledge 

that is not included in their training data [1]. 

Due to this limitation, a new concept known as retrieval-augmented generation (RAG) 
has emerged [2, 3]. This innovative approach combines LLMs' generative power with the 

ability to retrieve and integrate relevant information from external knowledge sources, 

thereby addressing the aforementioned limitation and enhancing NLP systems' overall 

performance and versatility. According to a recent survey [4], the development of RAG 
technology has shown significant progress. It has evolved alongside the emergence of the 

Transformer architecture, aiming to enhance language models by incorporating additional 

knowledge through Pre-Training Models (PTM). Initially, researchers focused on improving 

pre-training techniques [3, 5, 6]. Subsequently, the introduction of ChatGPT demonstrated 

the impressive capabilities of LLMs in in-context learning (ICL). This led to a shift in RAG 
research towards enhancing the information available to LLMs, enabling them to handle more 

complex and knowledge-intensive tasks during inference. As a result, significant 

advancements in RAG studies have been achieved. 
Three stages of the RAG research paradigm are described [4]: 
1. Naive RAG is the earliest methodology primarily comprising three steps: (a) 

Indexing refers to the process of creating an organized and searchable list or 

database of information. The process involves dividing documents into segments, 

converting them into numerical representations, and then storing them in a 

database specifically designed for vectors; (b) Information retrieval: retrieval of the 

k most relevant chunks based on semantic similarity to the question; (c) Generation. 

2. Advanced RAG implements targeted enhancements to address the constraints of 

the Naive RAG model. It utilizes strategies both before and after the retrieval 
process to improve retrieval quality. To address the problems related to indexing, 

Advanced RAG enhances its indexing methods by employing a sliding window 

approach, precise segmentation, and metadata integration. Furthermore, it 

integrates multiple optimization techniques to streamline retrieval [7]. 

3. Modular RAG is a modular system that uses an architecture that surpasses the 
previous two RAG paradigms by providing improved adaptability and versatility. 

The system employs various methods to enhance its elements, including adding a 

search module for conducting similarity searches and improving the retriever 
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through fine-tuning. Specific challenges have been addressed through the 

implementation of restructured RAG modules [8] and rearranged RAG pipelines [9]. 
Adopting a modular RAG approach is increasingly common, facilitating both 
sequential processing and integrated end-to-end training across its components. 

Modular RAG, although unique in its characteristics, is based on the fundamental 
principles of Advanced and Naive RAG. 

This research uses elements from all three stages described above. It includes creating 

a question-answering application using a set of free/open-source tools. The database/vector 

store is based on philosophical text. The answers generated by the application are for a set 

of test questions present in the original text, and they are analyzed for accuracy/consistency.  

The paper's main purpose is to describe the development and evaluation of a question-

answering application using retrieval-augmented generation techniques. 

The hypotheses being tested are: 

• Whether a RAG system can be created using freely available open-source tools 

to answer questions based on a philosophical text database. 

• How accurate and consistent are the answers generated by the RAG system for 
test questions present in the original text? 

The main conclusion is that RAG technologies can be adapted to solve domain-specific 

tasks and extrapolated to similar applications with adjustments. The paper provides an 

example of implementing this.  
 

2. Materials and Methods 

2.1 An overview of the RAG to be created 

LLMs can reason about wide-ranging topics, but their knowledge is limited to the 

public data up to the specific time they were trained. To build AI applications that can reason 

about private data or data introduced after a model’s cutoff date, there is a need to augment 

the knowledge of the model with the specific information it needs. The process of bringing 

and inserting the appropriate information into the model prompt is known as Retrieval 
Augmented Generation (RAG).  

RAG dynamically retrieves relevant context from external sources, integrates it with 
user queries, and feeds the retrieval-augmented prompt to an LLM for generating responses.  

To build the system, one must first set up the vector database with the external data 

by chunking the text, embedding the chunks, and loading them into the vector database. 

Once this is complete, the following steps in real-time to generate the answer for the user 

should be orchestrated: 

• Retrieve. Embedding the user query into the vector space to retrieve relevant context 

from an external knowledge source. 

• Augment. Integrating the user query and the retrieved context into a prompt template. 

• Generate. Feeding the retrieval-augmented prompt to the LLM for the final response 

generation.  

The general architecture of a RAG system is presented in Figure 1. 
Respectively, the main components of RAG are:  
(a) Vector database: a vector DB stores vector embeddings of the external source 

documents. 

(b) LLM: language models such as OpenAI or others are the foundation for generating 

responses. 
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Figure 1. The general architecture of the RAG. 

 

(c) Embedding model: often derived from the LLM, the embedding model plays a 

crucial role in creating meaningful text representation. 

(d) Orchestration tool: An orchestration tool like Langchain or Llamaindex manages 

the workflow and interactions between components. 
 

Creating a RAG system can start with building a vector store. This step can be 
implemented using different tools, but the result will be the vector database. Unlike 

traditional relational databases that primarily handle structured data, vector databases are 

optimized for managing unstructured and semi-structured data, such as images, text, and 

tables, represented as numerical vectors in a high-dimensional space. These vectors capture 

the inherent structure and relationships within the data, enabling sophisticated similarity 

search, recommendation, and data analysis tasks. Figure 2 denotes the main steps of this 

process. 
 

Figure 2. The RAG: creating the vector store. 
 

First, the documents in various formats should be loaded and then split/chunked. 

Chunking involves breaking down texts into smaller, manageable pieces. Each chunk 

becomes a unit of information that is vectorized and stored in a database, fundamentally 

shaping the efficiency and effectiveness of natural language processing tasks. 

Embeddings usually refer to dense, continuous vectors representing text in a high-

dimensional space. These vectors serve as coordinates in a semantic space, capturing the 

relationships and meanings between words. In the context of LLMs, embeddings play an 

important role in retrieving the right context for RAG. 
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2.2. Word embedding techniques 

Embedding techniques, including natural language processing, are widely used in 

various fields to represent data in a lower-dimensional vector space. These techniques aim 

to capture the underlying semantic structure and relationships between data points. Three 

popular embedding techniques are "l2," "ip," and "cosine," each with its own mathematical 

formalism behind it. 

The l2 embedding technique, or Euclidean distance, calculates the distance between 

two vectors in the Euclidean space. Given two vectors, a and b, of dimension 𝑛𝑛, the l2 distance 

is computed using the following formula: 
 

 𝑙𝑙2(𝑎𝑎, 𝑏𝑏) = �∑(𝑎𝑎𝑖𝑖 − 𝑏𝑏𝑖𝑖)2, (1) 
 

where: 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 represent the ith elements of vectors a and b, respectively. The l2 embedding 

technique aims to minimize this distance, which indicates the similarity between two vectors. 

Smaller l2 distances imply a higher degree of similarity. 

The ip embedding technique, or inner product, computes the dot product between two 

vectors. Given two vectors, a and b, of dimension 𝑛𝑛, the ip embedding is calculated as follows: 
 

 𝑖𝑖𝑖𝑖(𝑎𝑎, 𝑏𝑏) =  ∑(𝑎𝑎𝑖𝑖 ∗ 𝑏𝑏𝑖𝑖).  (2) 
 

In this formula, 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 represent the ith elements of vectors a and b, respectively. 

The ip embedding technique measures the similarity between two vectors based on their 

angle. Higher dot products indicate vectors that are more aligned or similar. 
The cosine embedding technique calculates the cosine of the angle between two 

vectors. Given two vectors, a and b, of dimension 𝑛𝑛, the cosine embedding is computed as: 
 

 cos(𝑎𝑎, 𝑏𝑏) =
𝑖𝑖𝑖𝑖(𝑎𝑎,𝑏𝑏)‖𝑎𝑎‖∗‖𝑏𝑏‖,  (3) 

 

where: 𝑖𝑖𝑖𝑖(𝑎𝑎, 𝑏𝑏) represents the inner product between vectors a and b, and ‖𝑎𝑎‖ and ‖𝑏𝑏‖ 

represent the Euclidean norms of vectors a and b, respectively. The cosine embedding 

technique ranges between -1 and 1, where 1 indicates perfect similarity, 0 indicates 

orthogonality, and -1 indicates perfect dissimilarity. 

In summary, the l2 embedding technique measures the Euclidean distance between 

two vectors, the ip embedding technique computes the dot product, and the cosine 

embedding technique calculates the cosine of the angle between two vectors. These 

embedding techniques provide different perspectives on representing the similarity or 

dissimilarity between vectors and are widely used in various applications. 

The techniques used in this research are usually based on l2 or cosine similarity. 
 

2.3. Assembling the RAG components 

Once all the components are ready, they are assembled, and the data flow in an RAG 
system looks like in Figure 3. 

 

2.4. Tools used throughout this research 

Most of the tools/approaches used in this research are open source/free and include: 

a) LangChain is a framework for developing applications powered by large language 

models (LLMs) [10]. LangChain enables building applications that connect external 

sources of data and computation to LLMs. LangChain has a number of components 

designed to help build Q&A applications and RAG applications more generally.  
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Figure 3. The RAG: main steps of the data flow. 

 

b) Chroma DB is a database for building AI applications with embeddings [11]. This 

tool uses valid embedding options: l2, ip, or cosine. The default is l2, which is the 

squared L2 norm. By default, Chroma uses the Sentence Transformers all-MiniLM-

L6-v2 model to create embeddings. This embedding model can create sentence 

and document embeddings that can be used for various tasks. Chroma provides 

lightweight wrappers around popular embedding providers, making using them in 

applications easy. 

c) LlamaIndex is a data framework for LLM-based applications [12]. It uses cosine 

similarity when comparing embeddings by default. It also uses the OpenAI GPT-

3.5-turbo model for text generation and the text-embedding-ada-002 model for 

retrieval and embeddings. 

d) GPT-3.5 Turbo models [13] can understand and generate natural language or code. 

They have been optimized for chat using the Chat Completions API but also work 

well for non-chat tasks. This research uses the latest GPT-3.5 Turbo model (0125) 

with higher accuracy at responding in requested formats available when the work 

was performed.  

e) Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction 

technique that can be used for visualization similarly to t-SNE but also for general 

non-linear dimension reduction [14]. The algorithm is founded on three 

assumptions about the data: (1) The data is uniformly distributed on the 

Riemannian manifold; (2) The Riemannian metric is locally constant (or can be 
approximated as such); (3) The manifold is locally connected. From these 

assumptions it is possible to model the manifold with a fuzzy topological structure. 

The embedding is found by searching for a low-dimensional data projection with 

the closest possible equivalent fuzzy topological structure [14, 15]. 

f) Triad tool: In this research, the “Triad approach” proposed by TruEra [16] is used 
to evaluate the RAG results. It includes three aspects/evaluations: context 
relevance, groundedness, and answer relevance. According to [16], satisfactory 

evaluations on each aspect are expected to provide confidence that the LLM 

application is free from hallucination. Figure 4 illustrates the architecture of this 

approach. 

The text used in this research is philosophical, coming from the field of social 

philosophy, namely the philosophy of management. It is from a published book [17] in the 

respective domain and represents the external source. 
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Figure 4. The architecture of the Triad approach [10]. 

 

The book includes fifty questions for self-evaluation. The original text is in Russian. 
For the purpose of the research, the text was translated into English. The answers provided 

by the RAG systems were also translated back into Russian for analysis by a native Russian-

speaking human expert. 
 

3. Results 

3.1. General description of the RAG systems built in this study 

There had been created several RAG systems based on the same external text source 
using combinations of tools described above. Three of them are analyzed in this article:  

a) a system based on the Sentence Window Retrieval using LlamaIndex tools. This 

approach gives an LLM better context by retrieving not just the most relevant 

sentence but the window of sentences that occur before and after it in the 

document. The embedding model used here is the HuggingFace BAAI/bge-small-

en-v1.5;  

b) a CromaDB-based system: as with other approaches the text from the book 

translated into English was extracted with PdfReader, split in chunks using 
LangChain text splitter, particularly Sentence Transformer Text Splitter with the 

dimension of a chunk equal to 256 characters, no overlap, embedding the chunks 

using the Sentence Transformer Embedding Model (all-MiniLM-L6-v2) with the 

generation of multidimensional dense vectors and collecting the resulting vectors 

into a vector store (i.e., Chroma database); 

c) a more sophisticated system based on Auto-merging Retrieval, which organizes the 
document into a tree-like structure where each parent node’s text is divided among 

its child nodes. When meta-child nodes are identified as relevant to the user 

question, then the entire text of the parent node is provided as context for the 

LLM. This version is also heavily based on LlamaIndex tools using the same model 

as a) for embeddings and the BAAI/bge-reranker-base model for reranking.   

The final steps for all three systems included retrieving the information from the DB 

based on text similarity (e.g., l2 similarity for a) and c), and cosine for b)) with the user query 

and passing the retrieved information to LLM using an API with a system prompt requiring 

the LLM to use only the retrieved information. The programming language used throughout 

this research is Python [18]. 
 

3.2. Retrieval details 

Since the final answer of an RAG system to a user query greatly depends on the quality 
of the original text embeddings, it is important to evaluate the quality of these embeddings. 

Within this research UMAP is used for this. UMAP makes it possible to project the 
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multidimensional vector space to two or three dimensions, which are easy to visualize and, 

at the same time, preserve the structure of the data (in Figures 5 and 6, these are represented 

by grey dots cloud). Analyzing Figure 5, it can be observed that the retrieved data points 

(denoted by green circles) are close to the query, implying semantic similarity.  
 

  
a) What is Temperology from the point of view 

of systems approach? 
b) Are there any contradictions between 

Temperology and Systems theory? 
Figure 5. The closeness (denoting similarity) of the query (red cross) and retrieved data 

(green circles) for two queries/questions (based on our own research data). 
 

In the case of a query (e.g., How does Mars influence the well-being of humans?) totally 

irrelevant to the original text, the retrieved chunks are located further away in the vector 

space, Figure 6. 
 

How does Mars influence the well-being of humans? 

 
Figure 6. The query (red cross) and the spread of retrieved data in the case of an 

irrelevant query (based on our own research data). 
 

This geometric visualization can help develop intuitions concerning the analyzed data 

and select the most appropriate embedding techniques to provide the best final results. 
 

3.2.  Evaluation results 

The Triad approach is used to evaluate answers provided by the RAG systems built in 
this research. The aspects subjected to evaluation included (a) context relevance, (b) 

groundedness, and (c) answer relevance. Figures 7 to 9 illustrate the results for one of the 

three RAG systems developed in this research. 
Context relevance (Figure 7) verifies the retrieval quality to ensure that each chunk of 

context is relevant to the input query. This is critical because this context will be used by the 

LLM to form an answer, so any irrelevant information in the context could be weaved into a 

hallucination. 
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Figure 7. Context relevance with Chain of Thoughts (CoT) reasons approach. 
 

Groundedness (Figure 8) represents how close the answer provided by an LLM is to 

the facts provided by retrieval. After the context is retrieved, an LLM forms it into an answer. 

LLMs often stray from the facts provided, exaggerating or expanding to a correct-sounding 

answer. 
 

 
Figure 8. Groundedness with Chain of Thoughts (CoT) reasons approach. 

 

Answer relevance (Figure 9) represents how useful is the answer provided by LLM.  

 
Figure 9. Answer relevance. 
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Evaluation results for all three RAG systems created in this study are summarized in 

Table 1. 

Table 1 

Results of using three RAG approaches to the same external data set 

Application 
Answer 

relevance 

Context 

relevance 
Groundedness 

Latency 

(seconds) 

Cost, 

($ US)  

RAG based on 
Sentence Window 

Retrieval 
0.804 0.760 0.107 6.10 0.003 

ChromaDB-based RAG 0.897 0.865 0.240 3.10 0.002 

RAG based on Auto-

merging approach 
0.846 0.529 0.621 37.84 0.006 

Note: RAG – Retrieval augmented generation 
 

Along with the performance parameters described previously (i.e., context relevance, 

groundedness, and answer relevance), the latency and cost of computation are also presented 

in Table 1, which are important when building and using such applications.  
 

4. Discussion 

Overall, the results show that the ChromaDB-based RAG system performed best 
regarding answer relevance, context relevance, and groundedness. This suggests that the 

approach of embedding text chunks into vectors and storing them in a ChromaDB followed 

by cosine similarity retrieval worked better than the other approaches for this dataset. 

The Sentence Window Retrieval approach showed reasonably good results for answer 
and context relevance but very low groundedness. This indicates that while the retrieved 

context was relevant, the LLM drifted far from the facts in the context while formulating the 

answer. 

The Auto-merging approach had the lowest context relevance score. This suggests 

that organizing the text into a tree structure and retrieving parent nodes did not accurately 

capture the relevant context compared to the other approaches. However, it had the highest 
groundedness score. 

The ChromaDB approach was the fastest and most cost-effective regarding latency 

and cost, making it the best-performing overall system. 

Some possibilities to improve the results would include: 

a) Experiment with different embedding models and similarity measures for the 

Sentence Window approach to improve groundedness. 

b) Trying refining the tree structuring and retrieval algorithm in the Auto-merging 

approach to capture more relevant context. 

c) Evaluating larger and more complex datasets to test the scalability of the 

approaches 

d) Adding explanatory capabilities to the LLM responses to improve transparency and 

trustworthiness. 

e) Combine ideas from the best performing ChromaDB approach and Auto-merging 

approach with its high groundedness for a hybrid system. 

Although the answer's relevance is being evaluated, in the case of the domain-specific 

test, the “ground truth” evaluated by a human expert might be of ultimate importance. Table 
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2 showcases the answer to one of the evaluation questions with an unambiguous answer 

(based on the original text). 
 

Table 2 

The answers to one of the evaluation questions provide by RAGs and CPT (without RAG)  
Question (query): 

"How many elements are there in the 

temperological structure of personality?" 

 

 

Answers provided by different approaches 

RAG 1 (based on Sentence Window Retrieval 
/ Auto-merging approach) 

“Three elements.” 

 

RAG 2 (based on ChromaDB) 

“The temperological structure of personality 

consists of three elements - the mind, reason, and 

self of a person.” 

 

ChatGPT (without RAG) 
“The temperological structure of personality 

typically consists of three main elements, which 

are emotionality, activity, and sociability.” 
Note: RAG - Retrieval augmented generation 

 

Although the answers provided by RAG 1 and RAG 2 are both correct, they differ in 
details, and only the human expert can probably decide on the most appropriate/the best 

answer. 
 

5. Conclusions 

In conclusion, the ChromaDB approach showed the best balance of performance and 

efficiency, but all systems could be enhanced further through additional experimentation and 

modeling efforts. 

Although the main goal of this research is to evaluate the possibilities of RAG using 
available approaches and tools (e.g., context relevance, groundedness, relevance, etc.), the 

answers to the fifty questions from the book mentioned above were presented to a human 

expert in the field the text comes from, who appreciated the level of the answers as 

“acceptable.” Since the understandability and trustworthiness of the answers may bear 
specific domain nuances, the future steps are to include an evaluation by human experts and 

use new approaches and tools in the RAG family, which are currently being actively 
developed. 

A multi-pronged empirical and human-centered evaluation approach that considers 

diverse use cases seems needed to comprehensively understand the strengths, weaknesses, 

and opportunities for improving such research. 
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