Selectivity control of Ni-doped copper oxide at high operating temperatures

Dinu Litra¹, Maxim Chiriac¹, Nicolai Ababii¹, Lukas Zimoch², Viorel Trofim¹, Pavel Metlinschi¹, Elena Darii¹, Oleg Lupan ^{1,2,3}

¹ Center for Nanotechnology and Nanosensors, Department of Microelectronics and Biomedical Engineering Technical University of Moldova, 168 Stefan cel Mare Av., MD-2004 Chisinau, Republic of Moldova, E-mails: nicolai.ababii@mib.utm.md, oleg.lupan@mib.utm.md, ORCID: 0000-0002-5603-7510, 0000-0002-5603-7510, 0000-0001-5046-8611, 0000-0002-6620-3076, 0000-0002-7406-4483, 0009-0002-8003-1482, 0000-0002-7913-9712

² Chair for Functional Nanomaterials, Department of Materials Science, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany, E-mails: luzi@tf.uni-kiel.de, ollu@tf.uni-kiel.de

³ Department of Physics, University of Central Florida, Florida, Orlando, Florida 32816-2385, United States. E-mails: lupan@physics.ucf.edu

Keywords: nanostructures, doped, sensor, hydrogen

Abstract. Gas sensors are of major importance in today's industrial, chemical, agricultural, energy and household fields, and their development for general consumer use is an area of growing interest [1, 2].

This study explores the development and hydrogen sensing performance of CuO nanostructures synthesized via a cost-effective chemical solution method. The nanostructures, composed of copper oxide granules uniformly coated with nickel nanoparticles, were deposited on a glass substrate and thermally treated using rapid thermal annealing (RTA) to minimize defects.

Figure 1 shows the response to several investigated gases, where a high sensitivity to hydrogen can be observed, with responses of 60-70% at high temperatures of 300°C and 350°C. The uniform deposition of Ni on CuO played a critical role in enhancing both sensitivity and selectivity towards hydrogen, while minimizing interference from other gases such as acetone, methane, and ammonia.

ELECTRONICS AND MATERIALS SCIENCE

13th IC ECCO

The sensor also demonstrated rapid response and recovery times, further confirming its potential for efficient hydrogen detection. These findings suggest that CuO nanostructures offer a promising, cost-effective solution for hydrogen sensing applications, particularly in safety-critical environments where hydrogen leaks need to be rapidly detected.

The following formula was used to determine the sensor signal [3]:

$$S = \frac{R_{gas} - R_{air}}{R_{air}} \times 100\%$$
⁽¹⁾

The study was supported by the by State Program LIFETECH « Innovations in Biomedical Engineering: Advanced Technologies and Applications for Data Acquisition, Processing and Analysis » No. 020404 at Technical University of Moldova.

References

[1] Litra D, Chiriac M, Lupan C, Lupan O (2024) PROPANOL DETECTION DEVICE FOR THE PURPOSE OF MONITORING THE QUALITY OF THE ENVIRONMENT. J Eng Sci 31:66–74. https://doi.org/10.52326/jes.utm.2024.31(1).06

[2] Wang R, Yang X, Chen X, et al (2024) A critical review for hydrogen application in agriculture: Recent advances and perspectives. Crit Rev Environ Sci Technol 54:222–238. https://doi.org/10.1080/10643389.2023.2232253

[3] Kutukov P, Rumyantseva M, Krivetskiy V, et al (2018) Influence of Mono- and Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO2 Based Gas Sensors. Nanomaterials 2018, 8.