
Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor,
Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 27-29 martie 2024, Vol. II

- 824 -

A DSL SOLUTION FOR MOLDOVA'S TAX SYSTEM

Vlad UNGUREANU*, Ludmila FRIPTU,

Ecaterina MUNTEANU, Dmitrii CRAVCENCO, Vasile CEBAN

Department of Software Engineering and Automation, gr. FAF-223, Faculty of Computers, Informatics, and

Microelectronics, Technical University of Moldova, Chisinau, Republic of Moldova.

*Corresponding author: Vlad Ungureanu, vlad.ungureanu@isa.utm.md

Tutor/coordinator: Gabriel ZAHARIA, universitary assistant

Abstract. Moldova's tax system is incredibly complex, with its many rules, changing rates, and

special deductions. This complexity can lead to costly mistakes for individuals and businesses

when calculating taxes. To address this challenge, a Domain-Specific Language specifically

designed for Moldovan taxes is being developed. This DSL aims to use the same language and

structure as the tax laws, making it easier to understand and reducing the likelihood of errors

during tax calculations. Imagine a system where individuals, small businesses, and even large

companies can save time and feel more confident about fulfilling their tax obligations. The DSL

has the potential to make this a reality by simplifying calculations and minimizing the risk of

unexpected penalties. This, in turn, could lead to better financial planning and reduced stress for

business owners.

Keywords: Moldova, computation, DSL, simplification, tax system, automation

 Introduction

For individuals and businesses in Moldova, the annual task of calculating taxes often means
grappling with complex regulations, a multitude of variables, and the ever-present risk of costly
errors or missed opportunities for deductions. This paper proposes a practical solution in the form
of a DSL created expressly for Moldovan tax computations. This DSL has the potential to improve
accuracy, save time, and reduce the stress associated with tax obligations by offering a streamlined
and intuitive approach.

Designed to reflect the terminology and structure of Moldovan tax laws, the DSL looks to
eliminate the need to translate complex regulations into generic spreadsheet formulas. This tailored
approach aims to minimize the potential for miscalculations and misunderstandings. Moreover,
the DSL could be designed to incorporate automated updates, ensuring it remains synchronized
with the latest tax code changes. This would alleviate the burden of manually tracking
amendments, further simplifying the process for taxpayers. By handling calculations with greater
precision and efficiency, the DSL could ultimately help individuals and businesses feel more
confident about their tax compliance, providing peace of mind within a typically complicated
process [1].

Understanding Moldovan Taxes: A Clearer Path with a DSL

Understanding taxes in Moldova can be daunting due to the complex regulations and jargon
like "bracket" and "deduction" [2]. To address this, a DSL is being developed to simplify the
process of calculating Moldovan taxes. This DSL will employ familiar terms from the tax code,
such as "income" and "dependents," making it easier to use. This approach not only reduces stress
but also enhances understanding, enabling users to see how different tax law components affect
their dues. The DSL is designed to be intuitive, replacing complex formulas with straightforward
language and step-by-step calculations. This transparency helps users stay informed about the
latest tax changes, ensuring they use current rates and avoid mistakes. It's more than just a tool for
calculation, it's a learning aid that empowers users to manage their taxes more effectively,

mailto:vlad.ungureanu@isa.utm.md

Technical Scientific Conference of Undergraduate, Master, PhD students,

Technical University of Moldova

Chisinau, Republic of Moldova, March 27-29, 2024, Vol. II

- 825 -

potentially assisting others too [3]. Ultimately, the DSL aims to provide peace of mind by offering
a clear and reliable method for tax calculations, with the prospect of future integration with official
government tax platforms for even greater ease and accuracy.

Grammar

Table 1

Representation of the Meta notation

< > These are metacharacters used to denote optional elements within a rule.
Anything enclosed within angle brackets might appear zero or one time in the
corresponding construct.

[x] Means zero or one occurrence of x, i.e., x is optional; note that brackets in
quotes ′ [′ ′]′ are terminals. 𝑥 ∗ This signifies zero or more occurrences of the element x. In simpler terms, the
element x can appear zero times (absent) or any number of times when
constructing the grammar rule. 𝑥 + A comma-separated list of one or more x’s.

| This symbol represents choice or alternatives. It separates two or more
possibilities within a rule.

<program> -> prog: (decl | expr)+ EOF # Program
 ;
<declaration> -> decl: ID ':' (INT_TYPE | DOUBLE_TYPE) '=' expr

#Declaration
 ;
<method_call> -> methodCall: (PRINT | TVA) LPAREN expr RPAREN
 ;
<IF_expr> -> ifExpr:
 IF expr THEN expr (ELSE expr)? # IfExpression
 ;
<statement> -> expr:
 methodCall # MethodExprCall
 | ifExpr # IfExprStatement
 | expr EQULITYOP expr # EqualityComparison
 | expr RELATIONALOP expr # RelationalComparison
 | expr '*' expr # Multiplication
 | expr '/' expr # Division
 | expr '+' expr # Addition
 | expr '-' expr # Subtraction
 | BOOL # Boolean
 | STRING # String
 | ID # Variable
 | NUM # Number
 ;
<type> -> INT_TYPE : 'INTEGER';
<type> -> DOUBLE_TYPE : 'DOUBLE';
<bool_literal> -> BOOL : 'TRUE' | 'FALSE';
<relation_comp> -> RELATIONALOP : (GT | LT | GTE | LTE);
<ecuality_comp> -> EQULITYOP : (EQ | NEQ);
<string_literal> -> STRING : '"' (~["])* '"';
COMMA : ',' ;
LPAREN : '(' ;
RPAREN : ')' ;
SEMI : ';' ;
<eq_op> -> EQ : '==' ;
<eq_op> -> NEQ : '!=' ;
<rel_op> -> GT : '>' ;

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor,
Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 27-29 martie 2024, Vol. II

- 826 -

<rel_op> -> LT : '<' ;
<rel_op> -> GTE : '>=' ;
<rel_op> -> LTE : '<=' ;
IF : 'if';
ELSE : 'else';
THEN : 'then';
PRINT : 'print';
TVA : 'tva';
FUNC : 'function' ;
<alpha> -> ID : [a-z][a-zA-Z0-9_]*;
<digit> -> NUM : [0-9]+ ('.' [0-9]+)? ;
<comment> -> COMMENT : '//' ~[\r\n]* -> skip; // ~ - negation, skip

everything except \r or \n
<whitespaces> -> WS : [\r\t\n]+ -> skip; // skip whitespaces

This is a program created according to grammar rules:
i : INTEGER = 5;
print(i);
tva(i);
j : INTEGER = tva(i);
print(j);

The program adheres to your defined grammar, with the following structure:
• Declaration (variable i)
• Expression (function call print(i))
• Expression (function call tva(i))
• Declaration (variable j)
• Assignment (variable j)
• Expression (function call print(j))

All program elements (variables, functions, operators) align with the grammar rules.
This is the result:
5.0
Value 5.0 has TVA: 1.0
1.0

The parse tree analysis (Fig. 1) outlines the structure of the DSL program. The root node

'prog' branches into sequences reflecting the program's flow. It begins with a declaration of
variable 'i' as an integer initialized to 5, followed by a print statement outputting 'i'. Next, an
expression involving a function call 'tva' takes 'i' as its argument, though the function's behavior
remains undefined. Another declaration sets variable 'j' as an integer, initialized via a similar
function call. The program concludes with a print statement for 'j', replicating the earlier output
structure.

Figure 1. The parse tree.

Based on the tree structure, the code follows the expected grammatical constructs for

variable declarations, expressions, function calls, and print statements.

Technical Scientific Conference of Undergraduate, Master, PhD students,

Technical University of Moldova

Chisinau, Republic of Moldova, March 27-29, 2024, Vol. II

- 827 -

Conclusions

Moldova faces a choice: stick with the outdated, stressful tax system or embrace a new
approach through a Domain-Specific Language. This DSL simplifies taxes, using plain language
to make them accessible to all, not just experts. By securely integrating with government systems,
it would reduce paperwork and ensure fair tax payments, aiding in responsible financial planning
for individuals and businesses alike. The shift to a DSL transforms the government's role to a
partner, fostering trust through tax transparency. Having defined the DSL's grammar, analyzed the
domain, and constructed the parsing tree, this move towards efficient, reliable tax systems
demonstrates Moldova's commitment to innovation and business-friendly policies, attracting
investment and job creation. Collaboration among technologists, tax professionals, government
officials, and the public is crucial to tailor the DSL to Moldova's evolving needs. Embracing this
change represents a step towards a future where smart financial decisions are within everyone's
reach, marking a new chapter in Moldova's tax narrative.

References

[1] Serviciul Fiscal de Stat. (2023).Tax Code. [Online]. Available: https://sfs.md/en/page/tax-
code

[2] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37(4):316-344, 2005.

[3] Eelco Visser. WebDSL: A case study in domain-specific language engineering. In R.
Lammel, J. Saraiva, and J. Visser, editors, Generative and Transformational Techniques in
Software Engineering (GTTSE 2007), Lecture Notes in Computer Science. Springer,
2008.

