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Abstract: This work is devoted to the study of the tribological properties of AISI 316L austenitic

steel and the effect of the relative velocity of rubbing bodies on the microstructure and mechanical

properties. The specificity of the deformation is investigated in the mode of dry friction “metal/metal”,

namely, steel AISI 316L/steel St3sp, with a process duration of 15 h. The change in the microstructure

of the samples as a result of friction and the determination of mechanical properties are carried out on

the friction surface and on the cross-section of the samples. The mechanical parameters are studied by

depth-sensitive indentation using a Berkovich indenter. It is shown that low friction with the relative

velocity of rubbing bodies of about 30 rpm is capable of introducing noticeable microstructural and

strength changes. Strength and relaxation properties (hardness, Young’s modulus, plasticity index,

and resistance index) increase in samples subjected to friction compared to the original undeformed

sample. A change in the microscopic structure of the samples near the friction surface increases such

material properties as microhardness (H) and Young’s modulus (E). In particular, the microhardness

increases from 1.72 GPa for the undeformed sample to 3.5 GPa for the sample subjected to friction

for 15 h. Young’s modulus increases from 107 GPa to 140 GPa, respectively. A comparison with the

properties of samples deformed at the relative velocity of rubbing bodies of about 300 rpm shows

a further increase in the microhardness and Young’s modulus. Also noted is the sensitivity of the

relaxation parameters to the friction process and the relative velocity of rubbing bodies. In particular,

the relaxation parameters hc and hres decrease while he-p increases.

Keywords: AISI 316L steel; relative velocity of rubbing bodies; microstructure and mechanical

parameters

1. Introduction

Various machines, machine tools, instruments, and equipment necessarily consist
of many components permanently in contact with each other while subjected to friction
stress of greater or lesser intensity. As a result, the components wear out, affecting the
performance quality and the product’s overall durability. For this reason, the study of
various fundamental and applied aspects of the friction mechanism is very important,
and a vast amount of the literature was devoted to these aspects [1–4]. In most cases,
the regularities of deformation and the mechanism of the friction process are studied on
materials and structures that are used in the creation of all kinds of moving parts and
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machines. In [2], the authors thoroughly analyzed three FCC materials (aluminum, copper,
and austenitic steel) using nanosliding and scratching at various load levels. A clear
influence of mechanical parameters on the mechanism of deformation and wear was noted.
The threshold values for the transition of the wear mechanism from sliding to scratching
and chipping increased with increasing hardness in the Al-Cu-steel series. Along with
this, the resistance index H3/E2 indicated the magnitude of the contact pressures, upon
reaching which a change in the wear mechanism occurred.

The degree of wear depends not only on the properties of the material subjected to
friction, but also on operating conditions such as normal forces, relative velocities, and the
length scales of textured surfaces. The higher the values of these parameters, the more
wear products appear, and this transforms the friction mode from adhesive to abrasive.
Wang et al. [3] showed that, under dry conditions, the smoothest surfaces do not show the
least friction from the increase in adhesion forces, as might be expected. A surface with a
slight microstructure reduces the coefficient of friction. In turn, macro-textured surfaces
markedly increase the coefficient of friction from the abrasive effect of the surface. The
effect of deformation treatment of the surface of 40KhNMA steel during sliding friction
on an abrasive surface was studied in [4]. It was shown that deformation treatment
promotes an increase in size and the presence of bulk defects in the crystal structure of
steel. Deformation treatment should be used to increase the hardness and bulk strength of
40KhNMA steel. To do this, it is necessary to use hardening, which simultaneously increases
the resistance to plastic deformation and the destruction of steel, estimated by increasing the
rheological parameter.

During friction, there is a rigid contact between two bodies, accompanied by the
rising of significant inhomogeneity in local stresses near the contact surfaces. As a result,
inhomogeneous plastic deformation occurs in materials subjected to friction. Bowden and
Leben [5] found that the friction force does not remain constant between two pieces of
metal moving relative to each other. The process of friction is not continuous but occurs
in large jerks. Under the action of a normal force, the contacting surfaces seem to “stick
together” to each other, and it is necessary to apply a tangential force for their relative
movement. As a result of gradually increasing tangential stress up to a certain maximum
value, a sudden and very fast sliding occurs. The tangential stress drops to zero at this
instant until the relative motion stops again. Then the tangential stress begins to increase
again, and the process repeats over and over. However, the nature of this process is not the
same for various combinations of rubbing materials. On the one hand, the friction process
depends on the physical properties of the rubbing materials (such as the chemical bond of
rubbing materials, hardness, elasticity, melting temperature, etc.). On the other hand, the
friction force and the nature of friction depend on external factors, such as the magnitude
of the normal load acting on the rubbing surface, the temperature at which friction occurs,
the presence of lubricants, the relative velocity of rubbing bodies, etc.

The presence of such a large number of factors affecting the mechanism of friction
and wear, naturally, was the reason for numerous studies. For example, the authors
of [6] used friction stir treatment (FSP) to harden the surface of AISI 440C high-carbon
martensitic stainless steel. An increase in hardness up to 779 HV1 and higher than that of
the conditionally hardened sample was achieved. In another work [7], in order to obtain
a hardening effect in AISI 316L stainless-steel sheets, friction treatment with stirring was
carried out at a constant speed (63 mm/min) and relatively low rotation speeds (200 and
315 rpm). It was found that despite the decrease in plasticity by 50%, the maximum yield
strength and ultimate tensile strength of the samples processed by friction with stirring
increased by about 1.6 and 1.2 times compared to the original metal. Dogan et al. [8] studied
the issue of friction and wear of stainless steel implanted with nitrogen and zirconium
and coated with TiN. These implantations have been shown to improve the coefficient of
friction, as well as the wear resistance of the stainless-steel surface.

The effect of silicon carbide in the range from 35–200 µm at various normal loads
(Pnorm = 50–110 N) on wear of steel 35NCD16 microstructure and abrasive grains was
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studied in [9]. It was shown that the coefficient of friction decreases with increasing normal
load and/or decreasing abrasive particle size. At the same time, the wear rate increases
with an increase in the normal load and/or abrasive particle size. It was found in [10] that
severe abrasive wear occurs at low load, and the highest nanohardness, elastic properties,
and creep resistance of SLMed IN718 superalloy is created directly under the wear surface.
More detailed studies of various issues related to friction hardening were carried out by
Rapoport and Rybakova [11,12], who established the formation of three microstructural
levels (layers) near the contact surface.

The results above were confirmed in [13–15]. It was shown that during the friction of
metal samples, the microstructure of a narrow surface layer differs significantly from that of
the bulk since the material is subjected to ultrahigh internal stresses near the friction surface.
These stresses are much higher than those in the bulk. In this case, a significant change
in the material’s behavior and the appearance of anomalous mass transfer phenomena
naturally occur. It was also found that the length of the hardened surface layer depends
both on the type of the deformable material (brass, copper, or steel) and on the friction
method (hard dry friction, extrusion, impact, or indentation) [16,17].

From the reasons mentioned above that affect the specificity and degree of deforma-
tion during friction, it becomes obvious that the relative velocity of rubbing bodies also
plays a significant role in all friction methods. This issue is studied insufficiently in the
scientific literature and needs additional attention. In [17], the effect of friction on the
micromechanical parameters of AISI 316L austenitic stainless steel was studied, taking into
account the extensive use of this material in various sectors of the industry and, in partic-
ular, in medicine for manufacturing implants. In this work, the study of the specifics of
deformation was carried out in two friction modes: 1—dry friction “metal/metal”, namely,
steel AISI 316L/steel St3sp, and 2—dry friction “metal/abrasive”, steel AISI 316L/abrasive
P2000, with different durations of the process (t = 1; 5 and 10 h). Friction processes were
performed using a MoPao 160E grinding and polishing machine at a rotation speed of
v ≈ 300 rpm and a normal pressure of Pnorm ≈ 400 mN.

It was found that different modes of friction create plastic deformation in the test
sample. The maximum modification of the microstructure was observed in a thin layer
(≤100 µm) directly adjacent to the friction surface, i.e., in the zone of severe plastic defor-
mation. The degree of plastic deformation successively decreased with distance from the
friction surface, and the sample acquired the original polycrystalline structure at a distance
of t ≈ 600–700 µm. Along with this, a change in the mechanical parameters, such as micro-
hardness (H), Young’s modulus (E), plasticity index (H/E), and resistance index (H3/E2),
also occurred. The degree of their change depended on the experimental conditions. Taking
into account that the friction conditions, in particular the relative velocity of rubbing bodies,
affected the microstructure and plasticity parameters noticeably, the study was continued
at a lower rotation speed but a longer process time.

2. Materials and Methods

In the present work, the studies were carried out on AISI 316L stainless-steel specimens
in the form of washers with a diameter of Ø15 mm and height of 5 mm. This steel grade
had the following chemical composition (in %): (C 0.019; Mn 1.74; P 0.017; S 0.001; Si 0.5;
Cr 17.38; Ni 14.24; Mo 2.85; N 0.062; Cu 0.1; Fe 63.09). To carry out the friction experiment,
the surfaces of the cut washers were prepared on a MoPao 160E polishing machine in
several stages: dry polishing with abrasive paper (P 600, P 1500, P 3000), then wet polishing
with Cr2O3 to a mirror finish in an optical microscope. The final surface roughness was
RSa = 16.24 nm and can be considered a high-quality roughness (for comparison, we
note that, in [18], shiny copper obtained by electrodeposition had a surface roughness
Ra = 0.613 µm = 61.3 nm). All measurements were made on the prepared surface; then, the
sample was subjected to chemical etching to reveal and study the grain structure. After that,
the sample was cut perpendicular to the surface, and all stages of surface preparation and
experiment were carried out similarly on the cross section. The specificity of deformation of
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