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Abstract In this paper, three types of microstructures are argued as substrates for electrochemical deposition of Au nanodots. They

include: (a) aero-GaN consisting of hollow GaN microtetrapods, (b) microdomains of pores with a controlled design produced

by anodization of InP wafers, and (c) patterned microdomains composed of strips with alternating electrical conductivity in GaN

crystals grown by hydride vapor phase epitaxy. Uniform deposition of Au nanodots with controlled density is demonstrated by

using pulsed electroplating, the voltage pulse width and amplitude as well as the pause between pulses and the conductivity of

the substrate serving as adjustable parameters. The morphology of the produced hybrid microarchitectures was investigated by

scanning electron microscopy. The explored microstructures are proposed as platforms for the development of complex 3D hybrid

micro-nano-architectures via the vapor–liquid–solid deposition of various semiconductor nanowires with Au nanodots as catalysts.

1 Introduction

Various functional nanowires with bandgap covering the spectral range from near infrared (NIR) to ultraviolet (UV) have been grown

on a variety of semiconductor substrates by means of catalyst-assisted or self-catalyzed vapor–liquid–solid (VLS) processes. In the

catalyst-assisted processes, Au is the most frequently used catalyzer. As concerns the technologies applied in the VLS process, they

include molecular beam epitaxy (MBE), chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD),

metalorganic vapor phase epitaxy (MOVPE) or metal organic chemical vapor deposition (MOCVD) and hydride vapor phase epitaxy

(HVPE).

InP and GaAs nanowires belong to semiconductor materials with the bandgap in the NIR spectral range. They have been produced

both with Au catalyst and by self-catalyzed VLS process on various substrates. InP nanowires have been grown with In droplets in

the self-catalyzed VLS process on Si substrates by MOCVD technology [1] and on InP substrates by MOVPE method [2]. With Au

catalyst, InP nanowires have been grown by MOVPE technology on InP [3], MoS2 [4], and quartz [5] substrates. InP nanowires have

also been grown by MBE with Au-In droplets as catalyst on Si substrates [6]. Apart from pure InP nanowires, InAs/InP quantum

rod nanowires were grown on Si substrate [7], InAs/InP quantum-disk nanowires were grown on InP substrates [8], and alternating

InAsP/InP heterostructure nanowires with multiple-quantum-dot structures were grown on InP substrates [9] with Au catalyst. InP

nanowire stems with InSb nanoflags have been grown with Au catalyst for quantum devices [10].

GaAs nanowires have been grown with Ga droplets in the self-catalyzed VLS process on Si substrates by MBE technology [11–13].

With Au catalyst, GaAs nanowires have been grown by HVPE technology on GaAs [14], by MOVPE technology on GaN [15], and by

MOCVD technology on SiN [16] substrates. Apart from pure GaAs nanowires, axial GaAs/Ga(As, Bi) heterostructures were grown

on Si substrates [17], GaAs/(InGa)As/GaAs axial double-heterostructure nanowires [18], core–shell GaAs-AlGaAs nanowires [19]

and GaAs/GaSb core–shell heterostructured nanowires [20] were grown on GaAs substrates, and InAs/GaAs core–shell nanowires

were grown on InAs substrates [21] with Au catalyst.

GaP nanowires with the bandgap in the visible spectral range have been grown with Ga catalyst in the self-catalyzed VLS

process on Si substrates by MBE technology [22]. With Au catalyst, GaP nanowires have been grown by MOVPE [23] and by MBE

technologies [24] on Si substrates, as well as by MOVPE [25] and by solid-source sublimation method [26] on GaP substrates.

Apart from pure GaP nanowires, axial hybrid GaP/Si nanowires [27] and core–shell GaP/GaPN nanowires [28] were grown on GaP

substrates with Au catalyst.
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GaN, ZnO, and ZnS nanowire structures were grown for the UV spectral range applications. GaN nanowires were grown with

Ga droplets in the self-catalyzed VLS process on Si substrates using CVD technology [29]. With Ga-Au-In alloy catalyst, GaN

nanowires were grown by MOCVD on GaN and sapphire substrates [30]. With Ni catalyst, GaN nanowires were grown by CVD

on sapphire substrates [31]. HVPE technology was applied to grow GaN nanowires on Si substrates with either Au catalyst [32],

or with Ni-Au catalyst [33]. In addition to pure GaN nanowires, GaN/InGaN core/shell multiple quantum well (MQW) co-axial

heterostructure nanowires were grown on a variety of sapphire, silicone, copper, tungsten, glass, gallium nitride, and beryllium

oxide substrates [34]. ZnO nanowires were grown with Au catalyst by carbothermal reduction method on Si substrates [35, 36], by

vapor phase deposition [37] and by mist-CVD [38] on GaN substrates. In addition to pure ZnO nanowires, ZnO-ZnMgO core–shell

nanowires have been grown on sapphire with Au catalysts [39]. ZnS nanowires [40, 41] and ZnS nanotubes [42] were grown by

thermal evaporation of ZnS powder on Si substrates with Au catalysts. ZnS nanowires were also grown by MOCVD on GaAs

substrates with Au catalysts [43]. Apart from pure ZnS nanowires, ZnS/diamond-like carbon (DLC) core–shell heterostructure

nanowires [44] and ZnS/SiO2 core–shell nanowires [45] were fabricated on Si substrates with Au catalysts. GaN/ReS2, ZnS/ReS2

and ZnO/ReS2 core–shell nanowire heterostructures were produced by CVD on SiO2/Si wafers with Au catalysts [46].

The variety of semiconductor nanowire structures produced with Au catalyst-assisted VLS growth on various substrates, covering

a wide spectral range, constitutes a powerful platform for many applications in electronics, optoelectronics, photonics, energy,

photocatalysis, piezoelectric generators, sensors etc. At the same time, most of these nanostructures were prepared on flat substrates.

Deposition of semiconductor nanowire arrays on microstructures with controlled design and morphology, would result in more

complex micro-nano-structure assemblies, which are expected to enlarge even more their areas of applications.

The goal of this paper is to demonstrate some 3D microstructure platforms with Au nanodot coatings for subsequent growth of

semiconductor nanowires and other applications.

2 Methods and materials

Three basic types of substrates were used in this paper. The first one is composed of aero-GaN 3D structures obtained by transforming

the sacrificial ZnO tetrapods [47] into GaN microtubes in a HVPE process as described elsewhere [48].

The second type of substrates was prepared on crystalline 500-µm thick n-InP(100) wafers with a free electron concentration of

1.3×1018 cm−3 supplied by CrysTec GmbH, Germany. Anodization was performed using 3.5 M NaCl electrolyte in the potentiostatic

mode at applied voltage of U � + 6 V in a double electrochemical cell with three electrodes, where the InP wafer played the role

of working electrode, while an Ag/AgCl electrode and a Pt electrode served as reference and counter electrode, respectively.

Free-standing HVPE-grown 300-µm thick wurtzite-phase (0001)-orientated n-GaN single crystalline samples with the density of

threading dislocations in the range (1–2)×10 7 cm −2 acquired from SAINT-GOBAIN Crystals served as a third type of substrates.

Pulsed electrochemical deposition of Au was realized in a commercially available gold bath containing 5 g L−1 Au (DODUCO

GmbH, Germany) at temperature of 25 °C in a common two-electrode plating cell where the sample served as working electrode,

while a platinum wire was used as a counter electrode. The electrochemical etching and pulsed electroplating with controlled

parameters of pulse width (ton), pause between pulses (toff), and voltage pulse amplitude (U) were performed according to the

experimental setup and methodology described in detail in a recent paper [49]. In the case of electroplating on aero-GaN pellets,

half of the sample was immersed in plating electrolyte, while the electrical contact was realized on the other side by means of silver

paste.

The morphology (top view and cross-sectional view) of samples was investigated using TESCAN Vega TS 5130 MM scanning

electron microscope (SEM).

3 Results and discussions

3.1 Aero-GaN covered by Au nanodots

Various aeromaterials consisting of hollow microtetrapods, such as aero-GaN [48], aero-ZnS [50], aero-Ga2O3 [51], and aero-TiO2

[52] were developed previously on the basis of networks of ZnO microtetrapods produced by the flame transport approach [47].

Such networks of ZnO microtetrapods were used as sacrificial templates for the preparation of aero-GaN 3D structures [48].

As previously shown, Au nanodots can be deposited on semiconductor substrates by pulsed electroplating [49], and the deposition

is controlled by the conductivity of the substrate, the applied cathodic voltage and the width of voltage pulses. The mechanism of

pulsed electrochemical deposition of metal nanodots (the so-called “hopping electrodeposition”) is governed by the Schottky barrier

height at the interface of the metallic nanodot with the semiconductor template [53]. The size of the metal nanodots after their

nucleation is controlled by the number of applied voltage pulses. However, it is limited by the height of the Schottky barrier. For

instance, for a GaP template with the free electron concentration of 2×1017 cm−3 the limit diameter of Au dots was found to be

around 20 nm [53]. After reaching this threshold size, a new nanodot is nucleated, and the deposition process continues until the

entire surface of the semiconductor template is covered by a monolayer of self-assembled Au nanodots. It was also found that the
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4 Conclusions

The results of this study demonstrate possibilities for depositing arrays of Au nanodots with controlled density on various microstruc-
tured semiconductor substrates. The density of nanodots is determined by the parameters of pulsed electroplating, such as the
voltage pulse amplitude and width, the pause between pulses, as well as by the conductivity of the substrate. Networks of hollow
GaN microtetrapods constituting the aero-GaN, microdomains of pores with a controlled design produced by anodization of InP
substrates, and patterned microdomains composed of strips with alternating electrical conductivity inherent to HVPE-grown GaN
are among microstructures demonstrated in this study. The self-assembled Au nanodots can serve as catalyst nucleation sites for
the growth of nanowires with various chemical compositions, as previously demonstrated using different technological approaches,
thus forming complex 3D micro-nano-architectures promising for photocatalytic [51, 63] and other applications.
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