
Journal of Engineering Science Vol. XXXI, no. 1 (2024), pp. 18 - 33

Fascicle Electronics and Computer Science ISSN 2587-3474

Topic Computers and Information Technology eISSN 2587-3482

Journal of Engineering Science March, 2024, Vol. XXXI (1)

https://doi.org/10.52326/jes.utm.2024.31(1).02

 UDC 004.42

MEAN-OF-2-4 QUICKSORT

Ion Bolun*, ORCID: 0000-0003-1961-7310

Technical University of Moldova, 168 Stefan cel Mare Blvd., Chisinau, Republic of Moldova

*Corresponding author: Ion Bolun, ion.bolun@isa.utm.md

Received: 02. 05. 2024

Accepted: 04. 02. 2024

Abstract. By combining the Median-of-three and Regrouping-3 quicksort methods, the Joint

quicksort is proposed, largely free from the shortcomings of the first two. For example, the

time complexity of Joint quicksort, in case of lists of n equal elements, is O(n). Analysis of the

dependence of Quicksort time complexity on the ratio of the derived sublist sizes shows a

relatively slow increase in sorting time as the ratio in question decreases from 0.5 to 0.1. The

proposed category of Mean-of-K (MeK) sorting algorithms provides for the determination of

pivot elements as the mean of K elements. It is shown that, in terms of sorting time, at K ∈

[1, 4] and size r of the list/sublist of elements to be sorted, it is convenient to use (roughly):

Insertion sort at r ≤ 9, Me2 quicksort at 10 ≤ r ≤ 21, Me3 quicksort at 22 ≤ r ≤ 46, and Me4
quicksort at r > 46, yielding the Mean-of-2-4 quicksort method. It was found that the

determination of pivot elements in the Median-of-three method requires more calculations

than in the Mean-of-3 method; respectively, using Mean-of-3 method could also reduce

sorting time. Of course, Mean-of-2-4 method could reduce this duration even further.

Keywords: basic Quicksort, Median-of-three quicksort, Regrouping-3 quicksort, pivot element

determination, time complexity, algorithm comparison.

Rezumat. Combinând metodele de sortare rapidă Mediana-a-trei și Regrupare-3, este propusă
sortarea rapidă Îmbinată, lipsită în mare măsură de neajunsurile primelor două. De exemplu,
complexitatea temporală a sortării rapide îmbinate, în cazul unor liste din n elemente egale,

este O(n). Analiza dependenței duratei sortării Rapide de raportul dintre dimensiunile
sublistelor derivate arată la o creștere relativ lentă a duratei sortării cu micșorarea raportului
în cauză de la 0,5 șa 0,1. Categoria de algoritmi de sortare Media-a-K (MeK) propusă prevede
determinarea elementelor pivot ca media a K elemente. Este demonstrat că, în ce privește
durata sortării, la K ∈ [1, 4] și dimensiunea r a listei/sublistei de elemente de sortat, este

oportun de folosit (aproximativ): sortarea prin Inserție la r ≤ 9, sortarea Me2 la 10 ≤ r ≤ 21,
sortarea Me3 la 22 ≤ r ≤ 46 și sortarea Me4 la r > 46, obținând astfel metoda de sortare rapidă
Media-a-2-4. S-a constatat că determinarea elementelor pivot la metoda Mediana-a-trei

necesită mai multe calcule decât la metoda Media-a-3; respectiv, folosirea metodei Media-a-

3 ar putea reduce și durata sortării. Bineînțeles, metoda Media-a-2-4 ar putea reduce această
durată și mai mult.

Cuvinte cheie: sortarea rapidă de bază, sortarea rapidă Mediana-a-trei, sortarea rapidă Regrupare-3,

determinarea elementului pivot, complexitate temporală, comparare algoritmi.

mailto:ion.bolun@isa.utm.md

 I. Bolun 19

Journal of Engineering Science March, 2024, Vol. XXXI (1)

1. Introduction

Sorting - the ordering of entities according to a parameter (key) is widely used in

computer science. As simple is the essence, so frequent sorting is encountered in practice, so

wide is the multitude of approaches, and so easy it is to construct simple sorting algorithms.

The first known sorting algorithm, Radix, based on the decimal numbering system, was

proposed and implemented in electromechanical tabulators by Herman Hollerith in 1890 [1].

Merge sort was proposed by Jame W. Bryce and implemented in 1938 in the Collator machine,

for merging cards from two different stations in a single sorting operation. In 1945 John Von

Neumann implemented this method in the electronic computer "EDVAC" [1].

From the first publications in the field, appeared in the 1950s, dozens of sorting

algorithms are proposed and research continues. Most of them were invented in the period

1954-1985 [2]. Approx. 30 such algorithms are described in [1] and a list of 74 chronologically

systematized algorithms is published in 2014 [3].

New sorting algorithms are also proposed after 2014, including pdqsort published in

2021 [4] and RevWay Sort published in 2022 [5]. However, so far, there is no a generalized

sorting algorithm that would best suit all situations in practice [6]. Thus, the search for a

suitable sorting algorithm for specific situations is still current [2].

One of the most used is Quicksort [2]. For randomized data, especially for large lists, it

is slightly faster than Merge sort and Heapsort [7].

At the same time, traditional Quicksort also has some shortcomings in certain

situations, which led to the proposal of some of its developments. The best known of them

is the Median-of-3 quicksort (Mo3), proposed in [9]. In this paper, some well-known and also

newly proposed algorithms based on the traditional Quicksort algorithm are described and

comparatively characterized.

2. Basic Quicksort

2.1. The essence of basic Quicksort

Quicksort was proposed by C.A.R. Hoare in 1961 [9], but also later independently in

[10] and possibly by other authors. Later, some developments of it were also published. In

the following, the version of basic Quicksort from [10] will be used.

Since there is a direct entity-key correspondence, in the following we will mainly

operate with the keys of the respective entities called elements. Quicksort provides [9, 10]

the choice, first, of the pivot element, say the last element in the list (it can be any) - s00. Then

the list of elements, as a result of n – 1 pairwise comparisons of element s00 with each of the

other n – 1 elements, is regrouped (partitioned) into two sublists of elements and element

s00: one sublist, say G11, will contain the smaller elements as s00, and the second sublist, be G12

– elements equal to or greater than s00. The comparison will be made consecutively with

elements at the beginning of the list until an element greater than the pivot is identified,

then with elements at the end of the list until an element smaller than the pivot is identified,

and subsequently the two elements thus identified will swap with the place; the process

continues in the same way until all n – 1 elements have been compared. Finally, the pivot

element will swap with the first element in the second sublist. Thus, in the first step, the

ordering of the elements is G11 → s00 → G12, where for 11Gi occurs i → s11, and for 12Gj

occurs s00 → j. Element s00 is already in the final position.

In the second step, as a result of comparing the pivot element s11 ∈ G11 (the last one in

the sublist), |G11| > 1, with the other elements of sublist G11, sublist G11 is also regrouped into

20 Mean-of-2-4 Quicksort

Journal of Engineering Science March, 2024, Vol. XXXI (1)

two sublists and element s11: G21 → s11 → G22, where 11
21

si
Gi


 and 22

11 Gj
js




. If sublist G11

is empty or contains only one element, i.e. |G11| ≤ 1, then it is no longer taken into
consideration in this and the following steps. Similar actions in this step are performed on

the G12 sublist, obtaining G23 → s12 → G24. Elements s11 and s12 are already in their final

positions. The process continues until all derived sublists at some step k become unitary or

empty, which signifies the termination of the ordering procedure.

The maximum number of pairwise element comparison operations (Umax) occurs when,

for each regrouping of a list/sublist into two sublists, one and only one non-empty element

sublist will be formed. Such a situation occurs if the initial list of elements is ordered or in

reverse order, or if all elements are equal. In this case [10]:

2

)1(
max




nn
U

.
(1)

On the contrary, the minimum number of pairwise element comparison operations

(Umin) occurs when, at each regrouping of a list/sublist into two sublists, two sublists of the

same size will be formed. This condition can only be met for [11]

,...2,1,122))...)21(2...1(21(21(1 1

0

 


 kn k

k

i

i

(2)

and in this case it takes place [10]:

 Umin = (n + 1)log2(n + 1) – 2n. (3)

At each current step, the elements in the list/sublist that are regrouped are written in

the same table. Each element in the regrouping list/sublist gets a comparison operation with

the pivot element and, if applicable, an additional 0.5 swap operations (the swap operation

between the two sublists common to the two elements); finally, one more place swap

operation is performed on the pivot element with the first element in the second sublist. Of

course, the concrete implementation on a specific computer also involves other operations,

but the basic ones are the nominated ones.

2.2. Dependence of Quicksort laboriousness on derived sublist sizes

The influence of the deviation of the value of n from that of Eq. (2) on the laboriousness

of sorting is of interest. Let n have such a value that, at each regrouping of a list/sublist into

two sublists, one of them will contain kd elements, and the other (1 – d)k elements, where d ∈ (0, 1). Obviously the minimum value of the sorting time T is obtained at d = 1/2 for all

iterations. The sorting time of the algorithm is determined [12] by the following recurrent

relation T(k,d) = k + T(⎣d(k – 1)⎦) + T(⎡(1 – d)(k – 1)⎤, d). If, in approximate calculations, to

operate with fractional numbers of entities, i.e. T(k, d) = k + T(d(k – 1)) + T((1 – d)(k – 1), d),

then the solution of this recurrent equation is [12]

 𝑇(𝑛, 𝑑)𝑇(𝑛, 12) = 1−𝑑𝑑 − (1 − 𝑑)(1 − 𝑑) . (4)

The essence of the quantity g(d) – how many times the duration T(n,d) is greater than

the duration T(n, 1/2) at d ∈[1/n, 1/2]. The graph of the function g(d) at d ∈ [0.025; 0.5] is

shown in Figure 1. From Figure 1 it can be seen that the laboriousness of Quicksort increases

relatively slowly when d decreases from 0.5 (the ratio between the sizes of the two derived

 I. Bolun 21

Journal of Engineering Science March, 2024, Vol. XXXI (1)

sublists is 1:1) to approx. 0.1 (the ratio between the sizes of the two derived sublists is 1:9).

Under uniform distribution of elements, the probability that the pivot element will be the one

at position s of the final (sorted) list is 1/n. Obviously, d = s/n. Under such assumptions and

taking into account that g(d) = g(1 – d), the mean value (gmed(n)) of g(d), at d ∈ [1/n, 1/2] and

n even, is determined as

 𝑔𝑚𝑒𝑑(𝑛)|𝑑[1𝑛,12] = 2𝑛 ∑𝑛/2
𝑠=1

1−𝑑𝑑 − (1 − 𝑑)(1 − 𝑑) , (5)

where d = s/n.

g(d), times

d

Figure 1. The increase of Quicksort laboriousness with the decrease of d < 1/2.

If the quantity g(d) can be used for the analysis of a Quicksort algorithm apart, then

the quantity gmed(n) can be used for the comparative analysis of some Quicksort algorithms.

The graph of the function gmed(n) at d ∈ [0.025; 0.5] is shown in Figure 2.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

gmed(n), times

n

Figure 2. Dependence on n of the average value of g(d) at d ∈ [0.025; 0.5].

22 Mean-of-2-4 Quicksort

Journal of Engineering Science March, 2024, Vol. XXXI (1)

From Figure 2 it can be seen that the function gmed(n) is increasing, that is, the

efficiency of Quicksort decreases with the increase in the number n of elements of the initial

list. At the same time, this growth is relatively slow, the abscissa scale being logarithmic. For

example, gmed(2048) = 2.43, and gmed(65536) = 2.87.

Thus, approximately (taking into account the assumptions admitted in [12]), the

average number of operations with Quicksort when sorting a list of 65536 elements is 2.87

times higher, compared to the situation when d = 1/2, both for the initial list as well as for

all derived sublists.

3. Quicksort variants based on traditional Quicksort

As mentioned in Section 2.1, the maximum laboriousness of basic Quicksort occurs

when the initial list of elements is ordered or in reverse order, or if all elements are equal.

The Quicksort variants described in this section are partially or completely free of these

shortcomings.

The Median-of-three quicksort (Mo3) [8] differs from the basic Quicksort by choosing

the pivot element from three elements of the list/sublist to regroup: the first, the last, and

the element in the middle position (obtained as the arithmetic mean truncated to integers of

the positions of the first and last elements). These three elements are ordered and the middle

element is used as the pivot element. Mo3 sorting allows reducing the volume of calculations

for cases with lists of elements already ordered or in reverse order. However, this variant does

not reduce the volume of calculations in the case of initial lists with entities that have equal keys.

The Regrouping-3 quicksort (R3), proposed in [10] and later in [13], operates efficiently

in cases of equal elements, too. Its difference from basic Quicksort consists in regrouping

each list/sublist not into two but into three sublists: the first sublist of elements smaller than

the pivot element, the second – of elements equal to the pivot element, and the third – of

elements larger than the pivot element. For example, the first step will obtain the sublists

G11 → S11 → G12, where the sublist S11 contains all elements equal to the pivot element s00.

Also, since equal elements usually occur less often, to reduce the amount of calculations, first

check whether the element belongs to the subset G11 and only then to the S11 or the G12. In

this case, the number of operations to regroup the current subset will usually be less. The

elements of sublist S11 are already in their final positions. In the same way, the regrouping of

the new sublists is carried out.

Obviously, the number of pairwise element comparison operations (U), in the case

when all n elements are equal and first the current element's membership in the first sublist

is checked, is U = 2(n – 1). At the same time, if there are no equal elements in the initial list,

then the R3 sort requires twice the number of pairwise comparison operations than in the

basic Quicksort. Moreover, R3 sorting does not reduce the amount of calculations in the case

of already ordered or reverse-ordered initial lists.

Joint quicksort. Comparing the Mo3 and R3 sorts, it can be seen that they complement

each other: the shortcoming of Mo3 (does not reduce the volume of calculations for initial

lists of equal elements) is eliminated by the R3 sort, and the shortcoming of the R3 sort (does

not reduce the volume of calculations in the case of initial lists already ordered or in reverse

order) are mitigated by Mo3 sorting. So, combining these two algorithms results in a more

efficient sort - Joined quicksort. This allows reducing the volume of calculations both for lists

of equal elements and for lists of elements already ordered or in reverse order. The essence

of Joint quicksort:

 I. Bolun 23

Journal of Engineering Science March, 2024, Vol. XXXI (1)

a) the pivot element is determined according to Median-of-three sorting;

b) each list/sublist is regrouped not into two but into three sublists according to

Regrouping-3 sorting.

4. Determining the pivot element

Based on the idea of Mo3 sorting, the question arises: why Mo3 and not, for example,

Mo2, Mo4 or, in general, MoK? In what follows in this section, the variants: Me1 (Mean-of-1 -

conventional average at basic Quicksort), Me2, Me3, and Me4 are investigated comparatively

under certain conditions described in Section 4.1. The notation Me2, Me3, and Me4 is used

rather than Mo2, Mo3, and Mo4 because the pivot keys are determined in a different way.

4.1. Description of the list of elements to be sorted and the sorting conditions

There are several variations of Quicksort. The following variant will be investigated in

the section. Let be a list of r entities that have key values (elements) {1, 2, 3, …, r – 1, r} and

are placed within the list arbitrarily. So, the distribution of entity key values is deterministic

uniform with the same distance of one unit between neighboring entities in the final ordered list.

At each step, for the sublist (hereafter the list) of size r that regroups into two sublists,

the pivot element u is determined as the arithmetic mean (truncated to integer) of K elements,

the neighboring ones being positioned in the list at approximately equal distances. For

example, at K = 2, for the pair of elements {j, k} positioned on the first (1) and last (r) positions,

respectively, is obtained u = ⎣(j + k)/2⎦. Likewise, at K = 3, for the triad of elements {j, k, l},

positioned on the first (1), the one in the middle (⎣(1 + r)/2⎦) and, respectively, the last (r)

positions is obtained u = ⎣(j + k + l)/3⎦.
By comparison with the pivot element, the list of r elements is regrouped into two

sublists, such that each element in the first sublist is less than or equal to the smallest

element in the second sublist. Regrouping into sublists continues until all sublists contain no

more than one element each. Such a sort is called Mean-of-K (MeK) sort. Also:

r is even;

Pi - the probability that the list of r elements regroups into two sublists, one of which

contains 𝑖 = 1, 𝑟/2 elements, and the other contains (r – i) elements;

Ni - the number of different regroupings in two sublists, one of which contains 𝑖 =1, 𝑟/2 elements, and the other contains (r – i) elements, also taking into account the

regroupings obtained from the end of the list;

N - the total number of different regroupings of the list of r elements into two sublists,

also taking into account the regroupings obtained from the end of the list.

With such an approach, along with the sortings of the categories K = {2w +1}, w = 1, 2,

3, ..., which can be seen as a generalization of the Median-of-three (Mo3) sorting, they also

make sense Mean-of-K (MeK) sorts of categories K = 2w, w = 1, 2, 3, …, some of which will be
examined in this section.

The comparison of MeK sortings, at different values of K = 1, 2, 3, ..., will be carried

out within the assumptions of [12], in the case of which Eqs (4) and (5) hold.

4.2. Mean-of-1 quicksort

Me1 sort involves groupings with the mean value of an element (conventional mean -

the value of the element itself) used as the pivot element.

Since at Me1 as pivot element u of regrouping the list of r elements into two sublists

can be any of the r elements, in total there can be r different regroupings of the same

24 Mean-of-2-4 Quicksort

Journal of Engineering Science March, 2024, Vol. XXXI (1)

probability. At r even, the variants of regrouping the list of r elements into two sublists are:

(1, r – 1), (2, r – 2), (3, r – 3), …, (r/2 – 1, r/2 + 1), (r/2, r/2), (r/2, r/2), (r/2 + 1, r/2 – 1), …, (r –

2, 2) , (r – 1, 1). Here, in regrouping (x, y), x and y specify the number of elements in the first

and second sublists of the regrouping, respectively. It can also be seen that for r even and

arbitrary selection of the pivot element u (for example, the first element in the list), the

number of operations required:

- of the regrouping (1, r – 1) is equal to that of the regrouping (r – 1, 1);

- of the regrouping (2, r – 2) is equal to that of the regrouping (r – 2, 2);

- of the regrouping (r/2 – 1, r/2 + 1) is equal to that of the regrouping (r/2 + 1, r/2 – 1);

- of the regrouping (r/2, r/2), obtained starting from the beginning of the list, is equal

to that of the regrouping (r/2, r/2), obtained starting from the end of the list.

At r even, there are r/2 cases where the first sublist has 𝑖 = 1, 𝑟/2 elements and r/2

cases where the second sublist has 𝑖 = 1, 𝑟/2 elements. Thus, in total there are r regroupings

with r different pivot elements. So, at r even, one has:

Pi = 2/r, 𝑖 = 1, 𝑟/2.

Under the assumptions in [12] and r = n, Eqs. (4) and (5) hold, and the dependencies

d(n) and gmed(n) = gMe1(n) of g(d), at d ∈ [1/n, 1/2] and n even, in graphical form are shown in

Figures 1 and 2.

4.3. Mean-of-2 quicksort

Me2 sorting assumes regroupings Mi,j with the average value of two elements, either j

and k, used as the (conventional) pivot element u = (j + k)/2, (𝑗, 𝑘) = 1, 𝑟, 𝑗 ≠ 𝑘:

 𝑀𝑗,𝑘 = (⌊𝑗 + 𝑘2 ⌋, 𝑟 − ⌊𝑗 + 𝑘2 ⌋) , (𝑗, 𝑘) = 1, 𝑟, 𝑗 ≠ 𝑘. (6)

The variants of regrouping the list of r elements into two sublists are the same as for

Me1: (1, r – 1), (2, r – 2), (3, r – 3), …, (r/2 – 1, r/2 + 1), (r/2, r/2), (r/2, r/2), (r/2 + 1, r/2 – 1), …,
(r – 2, 2), (r – 1, 1). Similarly, at r even, the number of regrouping operations required:

- of the regrouping (1, r – 1) is equal to that of the regrouping (r – 1, 1);

- of the regrouping (2, r – 2) is equal to that of the regrouping (r – 2, 2);

………………………………..
- of the regrouping (r/2 – 1, r/2 + 1) is equal to that of the regrouping (r/2 + 1, r/2 – 1);

- of the regrouping (r/2, r/2), obtained starting from the beginning of the list, is equal

to that of the regrouping (r/2, r/2), obtained starting from the end of the list.

So, only the cases of regroupings i ∈ [1, r/2] can be examined, but the obtained result

will be multiplied by 2. At i ∈ [1, r/2], from the beginning of the list one has the regroupings:

(1, r – 1): 1|2, 2|1 - in total 2 cases (N1= 2) , because ⎣(1 + 2)/2⎦ = 1 and ⎣(2 + 1)/2⎦ = 1 ;

(2, r – 2): 1|3, 1|4, 2|3 and vice versa - in total 3 + 3 = 6 cases (N2 = 6), since ⎣(1 + 3)/2⎦
= 2, ⎣(1 + 4)/2⎦ = 2 and ⎣(2 + 3)/2⎦ = 2;

(3, r – 3): 1|5, 1|6, 2|4, 2|5, 3|4 and vice versa - in total 5 + 5 = 10 cases (N3 = 10);

(4, r – 4): 1|7, 1|8, 2|6, 2|7, 3|5, 3|6 and vice versa - in total 7 + 7 = 14 cases (N4 = 14);

…………………………..
(i, r – i): in total Ni = (2i – 1) + (2i – 1) = 2(2i – 1) cases;

……………………………

(r/2, r/2): 1|r - 1, 1|r, 2|r - 2, 2|r - 1, 3|r - 3, 3|r - 2, 1|r - 1, …, (r/2 – 1|r/2 + 1), r/2|r - r/2;

in total 2(r – 1) cases.

 I. Bolun 25

Journal of Engineering Science March, 2024, Vol. XXXI (1)

Respectively, one gets:

Ni = 2⋅2(2i – 1) = 4(2i – 1), 𝑖 = 1, 𝑟/2.

𝑁 = ∑𝑟/2
𝑖=1 𝑁𝑖 = ∑𝑟/2

𝑖=1 4(2𝑖 − 1) = 4 ∑𝑟/2
𝑖=1 (2𝑖 − 1) = 8 ∑𝑟/2

𝑖=1 𝑖 − 4𝑟2 == 8 (𝑟2 + 1) 𝑟4 − 𝑟2= 𝑟2.
So,

 𝑃𝑖 = 𝑁𝑖𝑁 = 4(2𝑖 − 1)𝑟2 , 𝑖 = 1, 𝑟/2. (7)

Thus, under the assumptions of [12] and r = n, one obtains 𝑔𝑀𝑒2(𝑛)|𝑑[1/𝑛,1/2] == ∑1/2
𝑑=1/𝑛 𝑃𝑑𝑛𝑔(𝑑) = 4𝑛2 ∑1/2

𝑑=1/𝑛
2𝑑𝑛 − 1−𝑑𝑑 − (1 − 𝑑)(1 − 𝑑) . (8)

In graphical form, the dependence of the mean value gMe2(n) on g(d), at d ∈ [1/n, 1/2]

and n even, is shown in Figure 3.

1

1.05

1.1

1.15

1.2

1.25

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

gMe2(n), times

n

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11
4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

gMe3(n), times

n

Figure 3. Dependence gMe2(n)

at d ∈ [1/n, 1/2].

Figure 4. Dependence gMe3(n)

at d ∈ [1/n, 1/2].

The function gMe2(n) is increasing, and starting with, approximately, n = 2048 it changes

a little: from gMe2(2048) = 1.240550 ≈ 1.2406 (times) and up to gMe2(65536) = 1.242014 ≈
1.2420 (times).

4.4. Mean-of-3 quicksort

Me3 sorting assumes regroupings Mi,j,k with the average value of three elements, either

j, k and l, used as the pivot (conventional) element u = (j + k + l)/3, (𝑗, 𝑘, 𝑙) = 1, 𝑟, 𝑗 ≠ {𝑘, 𝑙}, 𝑘 ≠ 𝑙:
 𝑀𝑗,𝑘,𝑙 = (⌊𝑗 + 𝑘 + 𝑙3 ⌋, 𝑟 − ⌊𝑗 + 𝑘 + 𝑙3 ⌋) , (𝑗, 𝑘, 𝑙) = 1, 𝑟, 𝑗 ≠ {𝑘, 𝑙}, 𝑘 ≠ 𝑙. (9)

In the Me3 sort, the variants of regrouping the list of r elements into two sublists are

the same as in the Me2 sort. Likewise, only the cases of regroupings i ∈ [1, r/2], can be

examined, but the obtained result will be multiplied by 2. For simplicity, the case of using

three elements j, k and l to determine the respective pivot element will be noted j.k.l. In total,

with the same three elements, there are 3! different variants distinguished by their order: j.k.l,

j.l.k, k.j.l, k.l.j, l.j.k, l.k.j and l.j.k. In the following, only the variants in ascending order of the

constituent elements will be explicitly specified (i.e. j < k < l), and the obtained result will be

26 Mean-of-2-4 Quicksort

Journal of Engineering Science March, 2024, Vol. XXXI (1)

multiplied by 3! From the beginning of the list, in ascending order of the constituent elements

and 𝑖 = 1, 𝑟/2 (the obtained result will be multiplied by 2⋅3!), we have the Me3 regroupings:

(1, r – 1): in total there are N1 = 0 cases, because ⎣(1 + 2 + 3)/3⎦ = 2 > 1;

(2, r – 2): 1.2.3, 1.2.4, 1.2.5 and 1.3.4, for each variant x.y.z of which ⎣(x + y + z)/3⎦ = 2

occurs, i.e. 4 cases. Thus, in total there are N2 = 4⋅2⋅3! cases;

(3, r– 3): 1.2.6, 1.2.7, 1.2.8, 1.3.5, 1.3.6, 1.3.7, 1.4.5, 1.4.6, 2.3.4, 2.3.5, 2.3. 6 and 2.4.5

for each variant x.y.z of which ⎣(x + y + z)/3⎦ = 3 occurs, i.e. 12 cases. Thus, in total

there are N3 = 12⋅2⋅3! cases;

(4, r – 4): 1.2.9, 1.2.10, 1.2.11, 1.3.8, 1.3.9, 1.3.10, 1.4.7, 1.4.8, 1.4.9, 1.5.6, 1.5. 7, 1.5.8,

1.6.7, 2.3.7, 2.3.8, 2.3.9, 2.4.6, 2.4.7, 2.4.8, 2.5.6, 2.5.7, 3.4.5, 3.4.6, 3.4.7, 3.5.6, for

each variant x.y.z of which loc ⎣(x + y + z)/3⎦ = 4 occurs, i.e. 25 cases. Thus, in total

there are N4 = 25⋅2⋅3! cases;

and so on.

Respectively, one gets: 𝑁𝑖 = {0, 𝑎𝑡 𝑖 = 0 83!, 𝑎𝑡 𝑖 = 2 𝑁𝑖−1 + 23! {2(𝑖 + 1)+ 52 (𝑖 − 3), 𝑎𝑡 𝑖 𝑜𝑑𝑑 2𝑖 + 52 (𝑖 − 2), 𝑎𝑡 𝑖 𝑒𝑣𝑒𝑛 , 𝑖 = 3, 𝑟/2 .
𝑁 = ∑𝑟/2

𝑖=1 𝑁𝑖 .
𝑃𝑖 = 𝑁𝑖𝑁 , 𝑖 = 1, 𝑟/2.

Thus, under the assumptions of [12] and r = n, one obtains 𝑔𝑀𝑒3(𝑛)|𝑑[1/𝑛,1/2] == ∑1/2
𝑑=1/𝑛 𝑃𝑑𝑛𝑔(𝑑) = ∑1/2

𝑑=1/𝑛
𝑃𝑑𝑛−𝑑𝑑 − (1 − 𝑑)(1 − 𝑑) . (10)

In graphical form, the dependence of the mean value gMe3(n) on g(d), at d ∈ [1/n, 1/2]

and n even, is shown in Figure 4.

The function gMe3(n) is increasing, and starting with, approximately, n = 4096 it changes

little: from gMe3(4096) = 1.107057 (times) to gMe3(65536) = 1.107254 (times).

4.5. Mean-of-4 quicksort

Me4 sorting assumes regroupings Mi,j,k,l with the average value of four elements, let j,

k, l and m, used as the pivot (conventional) element u = (j + k + l + m)/4, (𝑗, 𝑘, 𝑙, 𝑚) = 1, 𝑟, 𝑗 ≠{𝑘, 𝑙, 𝑚}, 𝑘 ≠ {𝑙, 𝑚}, 𝑙 ≠ 𝑚: 𝑀𝑖,𝑗,𝑘,𝑙 = (⌊𝑗 + 𝑘 + 𝑙 + 𝑚4 ⌋, 𝑟 − ⌊𝑗 + 𝑘 + 𝑙 + 𝑚4 ⌋) , (𝑗, 𝑘, 𝑙, 𝑚) = 1, 𝑛, 𝑗 ≠ {𝑘, 𝑙, 𝑚}, 𝑘≠ {𝑙, 𝑚}, 𝑙 ≠ 𝑚. (11)

In the Me4 sort, the variants of regrouping the list of r elements into two sublists are

the same as in the Me2 sort. Likewise, only the cases of regroupings i ∈ [1, r/2], can be

examined, but the obtained result will be multiplied by 2. For simplicity, the case of using

four elements (j, k, l, m) to determine the pivot element respectively, j.k.l.m will be noted. In

total, with the same four elements, there are 4! different variants that differ by the order of

the constituent elements. In the following, only the variants in ascending order of the

constituent elements will be explicitly specified (i.e. j < k < l < m), and the obtained result will

be multiplied by 4! From the beginning of the list, in ascending order of the constituent

 I. Bolun 27

Journal of Engineering Science March, 2024, Vol. XXXI (1)

elements and 𝑖 = 1, 𝑟/2 (the obtained result will be multiplied by 2⋅4!), we have the Mo4

regroupings:

(1, r – 1): - in total there are N1 = 0 cases, because ⎣(1 + 2 + 3 + 4)/4⎦ = 2 > 1;

(2, r – 2): 1.2.3.4, 1.2.3.5, for each variant x.y.z.w of which ⎣(x + y + z + w)/4⎦ = 2 occurs,

i.e. 4 cases. Thus, in total there are N2 = 2⋅2⋅4! cases;

(3, r – 3): 1.2.3.6, 1.2.3.7, 1.2.3.8, 1.2.3.9, 1.2.4.5, 1.2.4.6, 1.2.4.7, 1.2.4.8, 1.2.5.6, 1.2.5.7,

1.3.4.5, 1.3.4.6, 1.3.4.7, 1.3.5.6, 2.3.4.5 and 2.3.4.6, for each variant x.y.z.w of which ⎣(x + y + z + w)/4⎦ = 3 occurs, i.e. 12 cases. Thus, in total there are N3 = 16⋅2⋅4! cases;

and so on.

Respectively, one gets: 𝑁𝑖 = {0, 𝑎𝑡 𝑖 = 1 𝑁2 = 224!, 𝑎𝑡 𝑖 = 2 𝑁𝑖−1 + 𝑁𝑖 , 𝑖 = 3, 𝑛/2 .
ΔNi = ΔNi-1 + 2⋅4!(i – 2)4⋅2 +2⋅4! {4, 𝑎𝑡 𝑖 = 3 7, 𝑎𝑡 𝑖 =4 9, 𝑎𝑡 𝑖 = 3𝑗 + 5, 𝑗 = 0, 1, 2, . . . 12, 𝑎𝑡 𝑖 = 3𝑗 + 6, 𝑗 = 0, 1, 2, . . . 15, 𝑎𝑡 𝑖 =3𝑗 + 7, 𝑗 = 0, 1, 2, . .. , at 𝑖 = 3, 𝑟/2, 𝑁 = ∑𝑟/2

𝑖=1 𝑁𝑖 .
𝑃𝑖 = 𝑁𝑖𝑁 , 𝑖 = 1, 𝑟/2.

Thus, under the assumptions of [12] and r = n, one obtains
 𝑔𝑀𝑒4(𝑛)|𝑑[1/𝑛,1/2] == ∑1/2

𝑑=1/𝑛 𝑃𝑑𝑛𝑔(𝑑) = ∑1/2
𝑑=1/𝑛

𝑃𝑑𝑛−𝑑𝑑 − (1 − 𝑑)(1 − 𝑑) . (12)

In graphical form, the dependence of the mean value gMe4(n) on g(d) at d ∈ [1/n, 1/2] and n

even is shown in Figure 5.

 The function gMo4(n) is increasing up to,

approximately, n = 2048, and then weakly

decreasing. Thus, gMe4(2048) = 1.062616,

gMe4(4096) = 1.062610 (times), gMe4(8192) =

1.062604 (times) and gMe4(65536) =

1.062598 (times).

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

gMe4(n), times

n

gMe1(n)

gMe2(n) gMe3(n) gMe4(n)

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

1.055

1.06

1.065

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

gMe4(n), times

n

Figure 5. Dependence of mean value

gMe4(n) at d ∈ [1/n, 1/2].

Figure 6. Dependences of mean values gMe1(n),

gMe2(n), gMe3(n), and gMe4(n) at d ∈ [1/n, 1/2].

28 Mean-of-2-4 Quicksort

Journal of Engineering Science March, 2024, Vol. XXXI (1)

4.6. Mean-of-2-4 quicksort

The Me2-4 quicksort is based on the results of comparing the Me1, Me2, Me3 and Me4

sorts. As already mentioned, the approximate comparison of these sorts can be performed

based on the mean value gMeK(n) of g(d) at d ∈ [1/n, 1/2]. For this purpose, Figure 6 shows the

dependences gMe1(n), gMe2(n), gMe3(n), and gMe4(n) at d ∈ [1/n, 1/2].

According to Figure 6, Me2, Me3, and Me4 sorts are considerably more efficient (in

terms of the number of operations required) than Me1, with the former's advantages over

Me1 sort increasing significantly as n increases. Of course, the computation of the pivot

elements requires additional computations, but at values of n not too small, they, already

knowing the value of the pivot element, are much smaller than the total number of sort operations.

In general, relationships take place

 gMe1(n) > gMe2(n) > gMe3(n) > gMe4(n) (13)

and

 gMe1(n) – gMe3(n) > gMe2(n) – gMe3(n) > gMe3(n) – gMe4(n). (14)

So, with the increase in the number K of elements, on the basis of which the pivot

element is determined, the advantage of using a larger number of such elements decreases

and may even be negative (due to the increase in the time needed to calculate the pivot

elements). Thus, relationships can be expected to occur

 gMeK(n) – gMe(K+1)(n) > gMe(K+1)(n) – gMe(K+2)(n), K = 1, 2, 3, … (15)

Therefore, it may not be appropriate to use too large values for K. However, the use of

Me4 sorting might be appropriate in some cases, especially at relatively large values of n. For

this purpose, only the dependences of the mean values gMe2(n), gMe3(n) and gMe4(n) of g(d), at d ∈ [1/n, 1/2] are shown in Figure 7.

1

1.05

1.1

1.15

1.2

1.25

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

gMeK(n), times

n

gMe2(n)

gMe3(n)

gMe4(n)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

gMeK(n) - gMe(K+1)(n)

n

gMe2(n) – gMe3(n)

gMe3(n) – gMe4(n)

Figure 7. Dependences of mean values

gMe2(n), gMe3(n), and gMe4(n) at d ∈ [1/n, 1/2].

Figure 8. Dependences of differences

gMeK(n) – gMe(K+1)(n) at K = {2, 3}.

From Figure 7 it can be seen that the value of gMeK(n) with increasing K stabilizes (to

some extent) at lower values of n.

A clearer quantitative difference in the efficiency of different sortings is presented by

the value of the differences gMeK(n) – gMe(K+1)(n), K = 1, 2, 3, … For K = 1, K = 2 and K = 3, some

of these are shown in Figure 8 and Table 1.

 I. Bolun 29

Journal of Engineering Science March, 2024, Vol. XXXI (1)

Since for the sorts Me1, Me2, Me3 and Me4 the sorting times T(n, 1/2) are

approximately equal, the sizes 100(gMeK(n) – gMe(K+1)(n)), K = 1, 2, 3 means, roughly, how much

(in %) the Me(K+1) sort is more efficient than the MeK sort.

From Table 1 it can be seen that the differences gMe1(n) – gMe2(n), gMe1(n) – gMe3(n), gMe1(n)

– gMe4(n), gMe2(n) – gMe3(n) and gMe3(n) – gMe4(n) are increasing with respect to n, the first three

of which, at n = 65536, reach considerable values, respectively (approximately): 1.628, 1.762

and 1.807. So only at very small values of n can it be reasonable to use the Me1 sorting over

the Me2 one. At the same time, if the difference gMe2(n) – gMe3(n) is relatively large, constituting

(approximately) 0.133 at n = 1024 and 0.135 at n = 65536 (i.e. a reduction of the laboriousness

of sorting by more than 13%), then the gMe3(n) – gMe4(n) is not negligible in some cases, being

(approximately) 0.044 at n = 1024 and 0.045 at n = 65536 (i.e. a reduction in sorting

laboriousness of more than 4.4%).

Table 1

Absolute value of differences gMeK(n) – gMeL(n)

n
gMe1(n) –

gMe2(n)

gMe1(n) –

gMe3(n)

gMe1(n) –

gMe4(n)

gMe2(n) –

gMe3(n)

gMe3(n) –

gMe4(n)

8 0.169002 0.243352 0.262709 0.074350 0.019357

16 0.299643 0.390807 0.421634 0.091164 0.030827

32 0.438706 0.544349 0.579620 0.105643 0.035271

64 0.578794 0.695242 0.732756 0.116448 0.037514

128 0.715023 0.838784 0.878588 0.123761 0.039804

256 0.844680 0.973064 1.014813 0.128384 0.041749

512 0.966614 1.097782 1.140836 0.131168 0.043054

1024 1.080642 1.213428 1.257245 0.132786 0.043818

 2048 1.187120 1.320822 1.365054 0.133702 0.044232

4096 1.286613 1.420823 1.465270 0.134210 0.044448

8192 1.379800 1.514288 1.558846 0.134488 0.044558

16384 1.467298 1.601936 1.646549 0.134638 0.044614

32768 1.549702 1.684419 1.729061 0.134717 0.044642

65536 1.627536 1.762296 1.806952 0.134760 0.044656

Of course, the laboriousness of the sorting algorithms depends on the particularities

of the implementation (programming language, computer, etc.). In approximate calculations,

the laboriousness of operations will be considered (in conventional operations): of reading a

number - c operations; of adding two numbers - a operations; of comparing two numbers - a

operations; of exchange with the place of two elements - s operations; of dividing two

numbers - h operations; of determining the position of the middle element of a list for the

Me3 sorting - two operations of reading the positions of the first and last elements of the list,

an operation of addition and an operation of division of two numbers (truncated to integers),

so in total a + 2c + h operations; of determining the positions of two non-marginal elements

positioned at approximately equal distances from the neighboring elements (out of the four)

in the list for the Me4 sorting – three addition operations, six read operations and one divide

operation, so a total of 3a + 6c + h operations.

30 Mean-of-2-4 Quicksort

Journal of Engineering Science March, 2024, Vol. XXXI (1)

Under these assumptions, the consideration of operations with the determination of

the pivot element can be carried out in the following way. Let the list/sublist, at the given

sort step, consist of r elements and, in the case of sorting:

- Me1, the last element of the list is taken as the pivot element u. Only one read

operation is then required, i.e. c conventional operations (conv. ops.);

- Me2, to determine the pivot (conventional) element u, the first and last elements of

the list are taken. Then two read operations are required, one operation to add the two

elements and one operation to divide; so in total a + 2c + h conv. ops.;

- Me3, to determine the pivot (conventional) element u, the first, last and middle

elements of the list are taken. Then there are required: one operation to determine the

position of the middle element, three read operations, two operations to add the three

elements and one divide operation; so in total a + 2c + h + 3c + 2a + h = 3a + 5c + 2h

conv. ops.;

- Me4, to determine the pivot (conventional) element u, the first, last and two non-

marginal elements positioned at approximately equal distances from the neighboring

elements (among the four) in the list are taken. Then it is necessary: an operation to

determine the positions of the two non-marginal elements, four reading operations,

three operations to add the four elements and a dividing operation; so in total 3a + 6c

+ h + 4c + 3a + h = 6a + 10c + 2h conv. ops.

Given the pivot element, it remains to determine the number of operations with

regrouping the list/sublist of r elements into two sublists. Let the list of r elements be sorted

in ascending order. The pivot element u (in the Me1 sort last in the list, and in the Me2, Me3

and Me4 sorts - a conventional element that is considered not to be contained in the list) is

compared with the list elements as in the basic Quicksort. That is, the pivot element is

consecutively compared with the elements at the beginning of the list until an element, say

j, greater than the pivot is identified, then with the elements at the end of the list until an

element, say k, smaller than the pivot is identified, and subsequently, the two elements thus

identified change with the place; the process continues in the same way until all r – 1 (at

Me1) or r (at 2, Me3, and Me4) elements have been compared. At each comparison of the

pivot element u with another element there can be two options, each of probability 1/2: j < u

or j > u, respectively, k < u or k > u. If j < u or k > u, then each comparison has two read

operations (of elements u and j or u and k, respectively) and a comparison operation of the

two elements - a total of 2c + a conventional operations, since the elements j and k remain

in place. But if j > u and k < u, then each comparison has two read operations (of elements u

and j or u and k, respectively), one comparison operation of the two elements and 0.5

exchange operations with the place of elements j and k - in total 2c + a + 0.5s conventional

operations. In the case of sorting Me1 at the end, additionally, the pivot element will be

swapped with the first element in the second sublist – a total of 2 read operations and a

swap operation with the place of two elements.

So, if the pivot element is known, the number of conventional operations with

regrouping the list/sublist of r entities into two sublists is roughly equal to (r – 1)(a + 2c)/2 +

(r – 1)(a + 2c) + 0.5s)/2 = (r – 1)(2a + 4c + 0.5s)/2 on Me1 sort (since the pivot element is an

element of the list) and with r(a + 2c)/2 + r(a + 2c + 0.5s)/2 = r(2a + 4c + 0.5s)/2 conv. ops. on

sorts Me2, Me3, and Me4 (since the pivot element is a conventional one and is considered

not to correspond to any element of the list).

 I. Bolun 31

Journal of Engineering Science March, 2024, Vol. XXXI (1)

Thus, the total number (RMeK) of conventional operations with the regrouping of the

list/sublist of r entities into two sublists is approximately:

- RMe1(r) = (r – 1)(2a + 4c + 0,5s)/2 + c, when Me1 sorting;

- RMe2(r) = r(2a + 4c + 0,5s)/2+ a + 2c + h, when Me2 sorting;

- RMe3(r) = r(2a + 4c + 0,5s)/2 + 3a + 5c + 2h, when Me3 sorting;

- RMe4(r) = r(2a + 4c + 0,5s)/2 + 6a + 10c + 2h, when Me4 sorting.

Let’s determine at what values of r it is appropriate to use each of the sorts under

discussion. Broadly speaking, using the MeK sort is as time complexity as using the Me(K+1)

sort at

 GMe(K+1),K(r) = (RMe(K+1)(r) – RMeK(r))/RMeK(r) = gMeK(r) – gMe(K+1)(r). (16)

Example 1. Let: a = 1 conv. ops.; c = 0.5a; h = s = 3a.

Then RMe1(r) = 2.75r – 2.25 conv. ops.; RMe2(r) = 2.75r + 5 conv. ops.; RMe3(r) = 2.75r + 11.5

conv. ops. and RMe4(r) = 2.75r + 17 conv. ops.

Based on Eq. (16), we obtain: (RMe2(r) – RMe1(r))/RMe1(r) = 7.75/(2.75r – 2.25) conv. ops.;

(RMe3(r) – RMe2(r))/RMe2(r) = 6.5/(2.75r + 5) conv. ops.; (RMe4(r) – RMe3(r))/RMe3(r) = 5.5/(2.75r + 11.5)

conv. ops.. Then, taking into account the data of Table 1, it can be concluded that,

approximately, it is appropriate to use the sorting: Me1 at r ≤ 12, Me2 at 12 < r ≤ 21, Me3 at
21 < r ≤ 46 and Me4 at r > 46. At the same time, in [9] it is shown that for r ≤ 9 instead of Mo3
sorting it is appropriate to use Insertionsort. This result can also be extended to Me3 sorting,

mostly close to Mo3, and MeK sorting, respectively. So, for sorting Me1 only 10 ≤ r ≤ 12
remains - very small area.

Thus, one can roughly conclude that for lists/sublists of size:

- r ≤ 9 is appropriate to use Insertionsort;
- 10 ≤ r ≤ 21 it is appropriate to use Me2 sorting;
- 22 ≤ r ≤ 46 it is appropriate to use the Me3 sorting;
- r > 46 it is appropriate to use the Me4 sorting.

Based on the result of Example 1, it may be appropriate the Mean-of-2-4 sorting which

for lists/sublists of size r uses: Insertionsort at r ≤ 9, Me2 sort at 10 ≤ r ≤ 21, Me3 sort at 22 ≤
r ≤ 46, and Me4 sort at r > 46. Also, if the initial list of elements is known to contain multiple

equal elements then the Mean-of-2-4 sort can be combined with the Regrouping-3 sort.

5. Comparing Median-of-three and Mean-of-3 quicksorts

The version of Mo3 sort proposed in [8], for sublists of size r ≤ 9, uses Insertionsort.
That is why when comparing Mo3 and Me3 sorts it is appropriate to consider the same

conditions, i.e. whether Insertionsort is used or not. Either in both use Insertionsort at r ≤ 9.
Also, for the list of elements to be sorted described in Section 4.1, the procedures used

to determine the pivot elements lead to the same regroupings of lists into sublists. So, the

time complexity difference between Mo3 and Me3 sorts for each list/sublist is only

determined by the number of operations required to determine the pivot element. In turn,

the two procedures for determining the pivot element differ only in that in the case of Mo3,

after determining the three elements, they are sorted and the middle element is used as the

pivot element; while in the case of Me3, after determining the three elements, their

arithmetic mean is calculated, which serves as the pivot element.

Thus, the number of operations required to determine a pivot element in the Mo3 and

Me3 sorts differs only at the last stage: in Mo3 – sorting the three elements, and in Me3 –

calculating the arithmetic mean of the three elements. When Mo3 sorting, for the three-

32 Mean-of-2-4 Quicksort

Journal of Engineering Science March, 2024, Vol. XXXI (1)

element sorting procedure described in [14], on average, 10.5 operations to read one element

and 3 operations to compare two elements are required – in total, at the complexities of the

operations used in Example 1, 8.25 conventional operations. In Me3 sorting, for the procedure

of calculating the arithmetic mean of three elements, 3 operations of reading an element, 2

operations of addition and one operation of division are required - in total, at the complexities

of operations used in Example 1, 6.5 conventional operations.

So, when determining a pivot element, the Me3 sort requires 1.75 fewer conventional

operations than the Mo3 sort. Given that the Me2-4 sort is preferable to the Me3 sort, the

number of sort operations, when using the Me2-4 sort and the list of elements to sort

described in Section 4.1, is even smaller compared to the Mo3 sort. It should also be noted

that for some lists of elements to be sorted, different from the one described in Section 4.1,

in some cases the pivot elements of the Me3 sort may be more successful, and for others -

the pivot elements of the Mo3 sort may be more successful and, respectively, the solutions

obtained. That is why, in specific cases, it may be appropriate to make the comparison in

question through computer simulation.

6. Conclusions

By combining the Median-of-three and Regrouping-3 quicksort methods, the Joint

quicksort is proposed, which allows reducing the volume of calculations both for lists of equal

elements and for lists of already ordered elements or in reverse order. Also is introduced the

category of Mean-of-K (MeK) quicksort algorithms that differs from the Median-of-three sort

[9] by determining the pivot element as the mean of K elements, positioned, in the list to

regroup, at approximately equal distances among them. For the basic Quicksort method (Me1)

under some assumptions, g(d) dependencies are analyzed – how many times the sorting time

T(n,d) is greater than the time T(n,1/2) at d ∈ [1/n, 1/2]. The laboriousness of the Me1 sort

increases relatively slowly as d decreases from 0.5 (the ratio between the sizes of the two

derived sublists is 1:1) to approx. 0.1 (the ratio in question is 1:9).

For the comparative analysis of Me1, Me2, Me3, and Me4 methods, the average value

(gmed(n)) of g(d) at d ∈ [1/n, 1/2] is determined. The calculation results show that the

dependencies gMe1(n), gMe2(n), gMe3(n), and gMe4(n) at d ∈ [1/r, 1/2], where gMeK(n) is gmed(n) on

MeK sorting, are increasing, that is, the efficiency of quick sort decreases as the number of

elements of the initial list increases. At the same time, this growth is slower and slower,

especially at higher values of K. Thus: gMe1(1024) ≈ 2.320, gMe1(2048) ≈ 2.428 and gMe1(65536)

≈ 2.870; gMe2(1024) ≈ 1.239, gMe2(2048) ≈ 1.241 and gMe2(65536) ≈ 1.242; gMe3(1024) ≈ 1.106,

gMe3(2048) ≈ 1.107 and gMe3(65536) ≈ 1.107; gMe4(1024) ≈ 1.063, gMe4(2048) ≈ 1.063 and

gMe4(65536) ≈ 1.063. Moreover, Eqs. (13) hold, i.e. the sorts with the higher K value, at K ∈ {1,

2, 3, 4}, are more efficient regarding the time of sorting.

Since for K ∈ {1, 2, 3, 4}, the sorting time T(n,1/2) practically does not depend on K,

the quantities 100(gMeK(n) – gMe(K+1)(n)), K = 1, 2, 3 means, roughly, how much (in %) the time

of the Me(K+1) sort is faster than that of the MeK sort. As a result of calculations, it is found

that the differences gMe1(n) – gMe2(n), gMe2(n) – gMe3(n) and gMe3(n) – gMe4(n) are increasing,

reaching at n = 65536 values, respectively (approximately): 1.628, 0.135 and 0.045. So, at n =

65536, using Me4 sorting allows to reduce the sorting time by approx. 4.5% compared to

Me3, which is sometimes not negligible.

The results of the comparison of Median-of-three and Mean-of-3 sorts show that the

Mean-of-3 sort requires fewer calculations with the determination of pivot elements and,

 I. Bolun 33

Journal of Engineering Science March, 2024, Vol. XXXI (1)

respectively, could also reduce the time of the sort. Of course, Mean-of-2-4 sorting could

reduce this time even further. At the same time, cases are not excluded when the Median-of-

three quicksort could be more efficient than the Mean-of-3 quicksort or even the Mean-of-2-

4 quicksort, if the pivot elements in the Median-of-three quicksort, for the respective lists of

elements, would be significantly more successful. Such cases could be identified by computer

simulation.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Knuth, D. The Art of Computer Programming. Sorting and Searching. 2nd Edition. Addison-Wesley, Reading,

Massachusetts, USA, 1998, 780 p.

2. Heineman, G.T.; Pollice, G.; Selkow, S. Algorithms in a Nutshell, 2nd Edition. O’Reilly Media, Sebastopol,
California, USA, 2015, 424 p.

3. Kadam, P.; Kadam, S. Root to Fruit (2): An Evolutionary Approach for Sorting Algorithms. Oriental Journal of

Computer Science & Technology 2014, 7(3), pp. 369-376.

4. Peters, O.R.L. Pattern-defeating Quicksort. arXiv:2106.05123v1 [cs.DS] 9 Jun 2021. Available online:

https://arxiv.org/pdf/2106.05123.pdf (accessed on 25.09.2023).

5. Saha, S.; Sarkar, S.; Patra, R.; Bhattacharjee, S. New Sorting Algorithm - RevWay Sort. In: Computational

Advancement in Communication, Circuits and Systems. Lecture Notes in Electrical Engineering, Mitra M., Nasipuri

M. Kanjilal, M.R. (eds), Springer, Singapore,2022, 2022, pp. 203–210.

6. Levintin, A. Introduction to Design and analysis of Algorithms. 2nd Edition. Pearson, New Delhi, India, 2013,

544 p.

7. Skiena, S.S. The Algorithm Design Manual. Springer, New York, USA, 2008, 730 p.

8. Sedgewick, R. Quicksort. Stanford University, Stanford Computer Science Report STAN-C.S~75-492, Ph.D.

Thesis, May 1975, 344 p.

9. Hoare, C.A.R. Partition (Algorithm 63); Quicksort (Algorithm 64); Find (Algorithm 65). Comm. ACM 1961, 4,

pp. 321-322.

10. Bolun, I.T. One modification of Johnson's ordering algorithm. In: Systems and means of integrated information

processing. ISRP, Chisinau, Republic of Moldova, 1981, pp. 43-46 [in Russian].

11. Bolun, I.T. Algorithm of ordering of jobs in a two-machine flow-shop. In: Mathematical support for automated

control systems. Stiinta, Chisinau, Republic of Moldova, 1984, pp. 102-112 [in Russian].

12. Filmus, Y. Solving recurrence relation with two recursive calls. Computer Science Stack Exchange. Available

online: https://cs.stackexchange.com/q/31930 (accessed on 20.10.2023).

13. Bentley, J. Programming Pearls. 2nd Edition. Addison-Wesley Professional, New York, USA, 1999, 283 p.

14. Sedgewick, R. The Analysis of Quicksort Programs. Acta Informatica 1977, 7, pp. 327—355.

Citation: G Bolun, I. Mean-of-2-4 Quicksort. Journal of Engineering Science 2024, XXXI (1), pp. 18-33.

https://doi.org/10.52326/jes.utm.2024.31(1).02.

Publisher’s Note: JES stays neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Copyright:© 2024 by the authors. Submitted for possible open access publication under the terms
and conditions of the Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

Submission of manuscripts: jes@meridian.utm.md

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://arxiv.org/pdf/2106.05123.pdf
https://en.wikipedia.org/wiki/Steven_Skiena
https://books.google.com/books?id=7XUSn0IKQEgC
https://cs.stackexchange.com/q/31930
https://en.wikipedia.org/wiki/Robert_Sedgewick_(computer_scientist)
https://doi.org/10.52326/jes.utm.2024.31(1).02
mailto:jes@meridian.utm.md

