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Abstract. By combining the Median-of-three and Regrouping-3 quicksort methods, the Joint 

quicksort is proposed, largely free from the shortcomings of the first two. For example, the 

time complexity of Joint quicksort, in case of lists of n equal elements, is O(n). Analysis of the 

dependence of Quicksort time complexity on the ratio of the derived sublist sizes shows a 

relatively slow increase in sorting time as the ratio in question decreases from 0.5 to 0.1. The 

proposed category of Mean-of-K (MeK) sorting algorithms provides for the determination of 

pivot elements as the mean of K elements. It is shown that, in terms of sorting time, at K ∈ 

[1, 4] and size r of the list/sublist of elements to be sorted, it is convenient to use (roughly): 

Insertion sort at r ≤ 9, Me2 quicksort at 10 ≤ r ≤ 21, Me3 quicksort at 22 ≤ r ≤ 46, and Me4 
quicksort at r > 46, yielding the Mean-of-2-4 quicksort method. It was found that the 

determination of pivot elements in the Median-of-three method requires more calculations 

than in the Mean-of-3 method; respectively, using Mean-of-3 method could also reduce 

sorting time. Of course, Mean-of-2-4 method could reduce this duration even further. 
 

Keywords:  basic Quicksort, Median-of-three quicksort, Regrouping-3 quicksort, pivot element 

determination, time complexity, algorithm comparison. 
 

Rezumat. Combinând metodele de sortare rapidă Mediana-a-trei și Regrupare-3, este propusă 
sortarea rapidă Îmbinată, lipsită în mare măsură de neajunsurile primelor două. De exemplu, 
complexitatea temporală a sortării rapide îmbinate, în cazul unor liste din n elemente egale, 

este O(n). Analiza dependenței duratei sortării Rapide de raportul dintre dimensiunile 
sublistelor derivate arată la o creștere relativ lentă a duratei sortării cu micșorarea raportului 
în cauză de la 0,5 șa 0,1. Categoria de algoritmi de sortare Media-a-K (MeK) propusă prevede 
determinarea elementelor pivot ca media a K elemente. Este demonstrat că, în ce privește 
durata sortării, la K ∈ [1, 4] și dimensiunea r a listei/sublistei de elemente de sortat, este 

oportun de folosit (aproximativ): sortarea prin Inserție la r ≤ 9, sortarea Me2 la 10 ≤ r ≤ 21, 
sortarea Me3 la 22 ≤ r ≤ 46 și sortarea Me4 la r > 46, obținând astfel metoda de sortare rapidă 
Media-a-2-4. S-a constatat că determinarea elementelor pivot la metoda Mediana-a-trei 

necesită mai multe calcule decât la metoda Media-a-3; respectiv, folosirea metodei Media-a-

3 ar putea reduce și durata sortării. Bineînțeles, metoda Media-a-2-4 ar putea reduce această 
durată și mai mult. 

 

Cuvinte cheie: sortarea rapidă de bază, sortarea rapidă Mediana-a-trei, sortarea rapidă Regrupare-3, 

determinarea elementului pivot, complexitate temporală, comparare algoritmi. 
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1. Introduction 

Sorting - the ordering of entities according to a parameter (key) is widely used in 

computer science. As simple is the essence, so frequent sorting is encountered in practice, so 

wide is the multitude of approaches, and so easy it is to construct simple sorting algorithms. 

The first known sorting algorithm, Radix, based on the decimal numbering system, was 

proposed and implemented in electromechanical tabulators by Herman Hollerith in 1890 [1]. 

Merge sort was proposed by Jame W. Bryce and implemented in 1938 in the Collator machine, 

for merging cards from two different stations in a single sorting operation. In 1945 John Von 

Neumann implemented this method in the electronic computer "EDVAC" [1]. 

From the first publications in the field, appeared in the 1950s, dozens of sorting 

algorithms are proposed and research continues. Most of them were invented in the period 

1954-1985 [2]. Approx. 30 such algorithms are described in [1] and a list of 74 chronologically 

systematized algorithms is published in 2014 [3]. 

New sorting algorithms are also proposed after 2014, including pdqsort published in 

2021 [4] and RevWay Sort published in 2022 [5]. However, so far, there is no a generalized 

sorting algorithm that would best suit all situations in practice [6]. Thus, the search for a 

suitable sorting algorithm for specific situations is still current [2]. 

One of the most used is Quicksort [2]. For randomized data, especially for large lists, it 

is slightly faster than Merge sort and Heapsort [7]. 

At the same time, traditional Quicksort also has some shortcomings in certain 

situations, which led to the proposal of some of its developments. The best known of them 

is the Median-of-3 quicksort (Mo3), proposed in [9]. In this paper, some well-known and also 

newly proposed algorithms based on the traditional Quicksort algorithm are described and 

comparatively characterized. 

2. Basic Quicksort  

2.1. The essence of basic Quicksort 

Quicksort was proposed by C.A.R. Hoare in 1961 [9], but also later independently in 

[10] and possibly by other authors. Later, some developments of it were also published. In 

the following, the version of basic Quicksort from [10] will be used. 

Since there is a direct entity-key correspondence, in the following we will mainly 

operate with the keys of the respective entities called elements. Quicksort provides [9, 10] 

the choice, first, of the pivot element, say the last element in the list (it can be any) - s00. Then 

the list of elements, as a result of n – 1 pairwise comparisons of element s00 with each of the 

other n – 1 elements, is regrouped (partitioned) into two sublists of elements and element 

s00: one sublist, say G11, will contain the smaller elements as s00, and the second sublist, be G12 

– elements equal to or greater than s00. The comparison will be made consecutively with 

elements at the beginning of the list until an element greater than the pivot is identified, 

then with elements at the end of the list until an element smaller than the pivot is identified, 

and subsequently the two elements thus identified will swap with the place; the process 

continues in the same way until all n – 1 elements have been compared. Finally, the pivot 

element will swap with the first element in the second sublist. Thus, in the first step, the 

ordering of the elements is G11 → s00 → G12, where for 11Gi  occurs i → s11, and for 12Gj  

occurs s00 → j. Element s00 is already in the final position.  

In the second step, as a result of comparing the pivot element s11 ∈ G11 (the last one in 

the sublist), |G11| > 1, with the other elements of sublist G11, sublist G11 is also regrouped into 
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two sublists and element s11: G21 → s11 → G22, where 11
21
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
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
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. If sublist G11 

is empty or contains only one element, i.e. |G11| ≤ 1, then it is no longer taken into 
consideration in this and the following steps. Similar actions in this step are performed on 

the G12 sublist, obtaining G23 → s12 → G24. Elements s11 and s12 are already in their final 

positions. The process continues until all derived sublists at some step k become unitary or 

empty, which signifies the termination of the ordering procedure.  

The maximum number of pairwise element comparison operations (Umax) occurs when, 

for each regrouping of a list/sublist into two sublists, one and only one non-empty element 

sublist will be formed. Such a situation occurs if the initial list of elements is ordered or in 

reverse order, or if all elements are equal. In this case [10]: 
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On the contrary, the minimum number of pairwise element comparison operations 

(Umin) occurs when, at each regrouping of a list/sublist into two sublists, two sublists of the 

same size will be formed. This condition can only be met for [11] 
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and in this case it takes place [10]: 

 Umin = (n + 1)log2(n + 1) – 2n. (3) 

At each current step, the elements in the list/sublist that are regrouped are written in 

the same table. Each element in the regrouping list/sublist gets a comparison operation with 

the pivot element and, if applicable, an additional 0.5 swap operations (the swap operation 

between the two sublists common to the two elements); finally, one more place swap 

operation is performed on the pivot element with the first element in the second sublist. Of 

course, the concrete implementation on a specific computer also involves other operations, 

but the basic ones are the nominated ones. 

2.2. Dependence of Quicksort laboriousness on derived sublist sizes 

The influence of the deviation of the value of n from that of Eq. (2) on the laboriousness 

of sorting is of interest. Let n have such a value that, at each regrouping of a list/sublist into 

two sublists, one of them will contain kd elements, and the other (1 – d)k elements, where d ∈ (0, 1). Obviously the minimum value of the sorting time T is obtained at d = 1/2 for all 

iterations. The sorting time of the algorithm is determined [12] by the following recurrent 

relation T(k,d) = k + T(⎣d(k – 1)⎦) + T(⎡(1 – d)(k – 1)⎤, d). If, in approximate calculations, to 

operate with fractional numbers of entities, i.e. T(k, d) = k + T(d(k – 1)) + T((1 – d)(k – 1), d), 

then the solution of this recurrent equation is [12] 

 𝑇(𝑛, 𝑑)𝑇(𝑛, 12)  = 1−𝑑𝑑 − (1 − 𝑑)(1 − 𝑑) . (4) 

The essence of the quantity g(d) – how many times the duration T(n,d) is greater than 

the duration T(n, 1/2) at d ∈[1/n, 1/2]. The graph of the function g(d) at d ∈ [0.025; 0.5] is 

shown in Figure 1. From Figure 1 it can be seen that the laboriousness of Quicksort increases 

relatively slowly when d decreases from 0.5 (the ratio between the sizes of the two derived 
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sublists is 1:1) to approx. 0.1 (the ratio between the sizes of the two derived sublists is 1:9). 

Under uniform distribution of elements, the probability that the pivot element will be the one 

at position s of the final (sorted) list is 1/n. Obviously, d = s/n. Under such assumptions and 

taking into account that g(d) = g(1 – d), the mean value (gmed(n)) of g(d), at d ∈ [1/n, 1/2] and 

n even, is determined as 

 𝑔𝑚𝑒𝑑(𝑛)|𝑑[1𝑛,12] = 2𝑛 ∑𝑛/2
𝑠=1

1−𝑑𝑑 − (1 − 𝑑)(1 − 𝑑) , (5) 

where d = s/n. 

g(d), times

d

 
Figure 1. The increase of Quicksort laboriousness with the decrease of d < 1/2. 

 

If the quantity g(d) can be used for the analysis of a Quicksort algorithm apart, then 

the quantity gmed(n) can be used for the comparative analysis of some Quicksort algorithms. 

The graph of the function gmed(n) at d ∈ [0.025; 0.5] is shown in Figure 2. 
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Figure 2. Dependence on n of the average value of g(d) at d ∈ [0.025; 0.5]. 
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From Figure 2 it can be seen that the function gmed(n) is increasing, that is, the 

efficiency of Quicksort decreases with the increase in the number n of elements of the initial 

list. At the same time, this growth is relatively slow, the abscissa scale being logarithmic. For 

example, gmed(2048) = 2.43, and gmed(65536) = 2.87. 

Thus, approximately (taking into account the assumptions admitted in [12]), the 

average number of operations with Quicksort when sorting a list of 65536 elements is 2.87 

times higher, compared to the situation when d = 1/2, both for the initial list as well as for 

all derived sublists. 
 

3. Quicksort variants based on traditional Quicksort 

As mentioned in Section 2.1, the maximum laboriousness of basic Quicksort occurs 

when the initial list of elements is ordered or in reverse order, or if all elements are equal. 

The Quicksort variants described in this section are partially or completely free of these 

shortcomings. 

The Median-of-three quicksort (Mo3) [8] differs from the basic Quicksort by choosing 

the pivot element from three elements of the list/sublist to regroup: the first, the last, and 

the element in the middle position (obtained as the arithmetic mean truncated to integers of 

the positions of the first and last elements). These three elements are ordered and the middle 

element is used as the pivot element. Mo3 sorting allows reducing the volume of calculations 

for cases with lists of elements already ordered or in reverse order. However, this variant does 

not reduce the volume of calculations in the case of initial lists with entities that have equal keys. 

The Regrouping-3 quicksort (R3), proposed in [10] and later in [13], operates efficiently 

in cases of equal elements, too. Its difference from basic Quicksort consists in regrouping 

each list/sublist not into two but into three sublists: the first sublist of elements smaller than 

the pivot element, the second – of elements equal to the pivot element, and the third – of 

elements larger than the pivot element. For example, the first step will obtain the sublists 

G11 → S11 → G12, where the sublist S11 contains all elements equal to the pivot element s00. 

Also, since equal elements usually occur less often, to reduce the amount of calculations, first 

check whether the element belongs to the subset G11 and only then to the S11 or the G12. In 

this case, the number of operations to regroup the current subset will usually be less. The 

elements of sublist S11 are already in their final positions. In the same way, the regrouping of 

the new sublists is carried out. 

Obviously, the number of pairwise element comparison operations (U), in the case 

when all n elements are equal and first the current element's membership in the first sublist 

is checked, is U = 2(n – 1). At the same time, if there are no equal elements in the initial list, 

then the R3 sort requires twice the number of pairwise comparison operations than in the 

basic Quicksort. Moreover, R3 sorting does not reduce the amount of calculations in the case 

of already ordered or reverse-ordered initial lists. 

Joint quicksort. Comparing the Mo3 and R3 sorts, it can be seen that they complement 

each other: the shortcoming of Mo3 (does not reduce the volume of calculations for initial 

lists of equal elements) is eliminated by the R3 sort, and the shortcoming of the R3 sort (does 

not reduce the volume of calculations in the case of initial lists already ordered or in reverse 

order) are mitigated by Mo3 sorting. So, combining these two algorithms results in a more 

efficient sort - Joined quicksort. This allows reducing the volume of calculations both for lists 

of equal elements and for lists of elements already ordered or in reverse order. The essence 

of Joint quicksort: 
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a) the pivot element is determined according to Median-of-three sorting; 

b) each list/sublist is regrouped not into two but into three sublists according to 

Regrouping-3 sorting. 
 

4. Determining the pivot element 

Based on the idea of Mo3 sorting, the question arises: why Mo3 and not, for example, 

Mo2, Mo4 or, in general, MoK? In what follows in this section, the variants: Me1 (Mean-of-1 - 

conventional average at basic Quicksort), Me2, Me3, and Me4 are investigated comparatively 

under certain conditions described in Section 4.1. The notation Me2, Me3, and Me4 is used 

rather than Mo2, Mo3, and Mo4 because the pivot keys are determined in a different way. 

4.1. Description of the list of elements to be sorted and the sorting conditions 

There are several variations of Quicksort. The following variant will be investigated in 

the section. Let be a list of r entities that have key values (elements) {1, 2, 3, …, r – 1, r} and 

are placed within the list arbitrarily. So, the distribution of entity key values is deterministic 

uniform with the same distance of one unit between neighboring entities in the final ordered list. 

At each step, for the sublist (hereafter the list) of size r that regroups into two sublists, 

the pivot element u is determined as the arithmetic mean (truncated to integer) of K elements, 

the neighboring ones being positioned in the list at approximately equal distances. For 

example, at K = 2, for the pair of elements {j, k} positioned on the first (1) and last (r) positions, 

respectively, is obtained u = ⎣(j + k)/2⎦. Likewise, at K = 3, for the triad of elements {j, k, l}, 

positioned on the first (1), the one in the middle (⎣(1 + r)/2⎦) and, respectively, the last (r) 

positions is obtained u = ⎣(j + k + l)/3⎦. 
By comparison with the pivot element, the list of r elements is regrouped into two 

sublists, such that each element in the first sublist is less than or equal to the smallest 

element in the second sublist. Regrouping into sublists continues until all sublists contain no 

more than one element each. Such a sort is called Mean-of-K (MeK) sort. Also: 

r is even; 

Pi - the probability that the list of r elements regroups into two sublists, one of which 

contains 𝑖 = 1, 𝑟/2 elements, and the other contains (r – i) elements; 

Ni - the number of different regroupings in two sublists, one of which contains 𝑖 =1, 𝑟/2 elements, and the other contains (r – i) elements, also taking into account the 

regroupings obtained from the end of the list; 

N - the total number of different regroupings of the list of r elements into two sublists, 

also taking into account the regroupings obtained from the end of the list. 

With such an approach, along with the sortings of the categories K = {2w +1}, w = 1, 2, 

3, ..., which can be seen as a generalization of the Median-of-three (Mo3) sorting, they also 

make sense Mean-of-K (MeK) sorts of categories K = 2w, w = 1, 2, 3, …, some of which will be 
examined in this section. 

The comparison of MeK sortings, at different values of K = 1, 2, 3, ..., will be carried 

out within the assumptions of [12], in the case of which Eqs (4) and (5) hold. 
 

4.2. Mean-of-1 quicksort 

Me1 sort involves groupings with the mean value of an element (conventional mean - 

the value of the element itself) used as the pivot element. 

Since at Me1 as pivot element u of regrouping the list of r elements into two sublists 

can be any of the r elements, in total there can be r different regroupings of the same 



24 Mean-of-2-4 Quicksort 

Journal of Engineering Science  March, 2024, Vol. XXXI (1) 

probability. At r even, the variants of regrouping the list of r elements into two sublists are: 

(1, r – 1), (2, r – 2), (3, r – 3), …, (r/2 – 1, r/2 + 1), (r/2, r/2), (r/2, r/2), (r/2 + 1, r/2 – 1), …, (r – 

2, 2) , (r – 1, 1). Here, in regrouping (x, y), x and y specify the number of elements in the first 

and second sublists of the regrouping, respectively. It can also be seen that for r even and 

arbitrary selection of the pivot element u (for example, the first element in the list), the 

number of operations required: 

- of the regrouping (1, r – 1) is equal to that of the regrouping (r – 1, 1); 

- of the regrouping (2, r – 2) is equal to that of the regrouping (r – 2, 2); 

- of the regrouping (r/2 – 1, r/2 + 1) is equal to that of the regrouping (r/2 + 1, r/2 – 1); 

- of the regrouping (r/2, r/2), obtained starting from the beginning of the list, is equal 

to that of the regrouping (r/2, r/2), obtained starting from the end of the list. 

At r even, there are r/2 cases where the first sublist has 𝑖 = 1, 𝑟/2 elements and r/2 

cases where the second sublist has 𝑖 = 1, 𝑟/2 elements. Thus, in total there are r regroupings 

with r different pivot elements. So, at r even, one has: 

Pi = 2/r, 𝑖 = 1, 𝑟/2. 

Under the assumptions in [12] and r = n, Eqs. (4) and (5) hold, and the dependencies 

d(n) and gmed(n) = gMe1(n) of g(d), at d ∈ [1/n, 1/2] and n even, in graphical form are shown in 

Figures 1 and 2. 
 

4.3. Mean-of-2 quicksort 

Me2 sorting assumes regroupings Mi,j with the average value of two elements, either j 

and k, used as the (conventional) pivot element u = (j + k)/2, (𝑗, 𝑘) = 1, 𝑟, 𝑗 ≠ 𝑘: 

 𝑀𝑗,𝑘 = (⌊𝑗 + 𝑘2 ⌋, 𝑟 − ⌊𝑗 + 𝑘2 ⌋) , (𝑗, 𝑘) = 1, 𝑟, 𝑗 ≠ 𝑘. (6) 

The variants of regrouping the list of r elements into two sublists are the same as for 

Me1: (1, r – 1), (2, r – 2), (3, r – 3), …, (r/2 – 1, r/2 + 1), (r/2, r/2), (r/2, r/2), (r/2 + 1, r/2 – 1), …, 
(r – 2, 2), (r – 1, 1). Similarly, at r even, the number of regrouping operations required: 

- of the regrouping (1, r – 1) is equal to that of the regrouping (r – 1, 1); 

- of the regrouping (2, r – 2) is equal to that of the regrouping (r – 2, 2); 

……………………………….. 
- of the regrouping (r/2 – 1, r/2 + 1) is equal to that of the regrouping (r/2 + 1, r/2 – 1); 

- of the regrouping (r/2, r/2), obtained starting from the beginning of the list, is equal 

to that of the regrouping (r/2, r/2), obtained starting from the end of the list. 

So, only the cases of regroupings i ∈ [1, r/2] can be examined, but the obtained result 

will be multiplied by 2. At i ∈ [1, r/2], from the beginning of the list one has the regroupings: 

(1, r – 1): 1|2, 2|1 - in total 2 cases (N1= 2) , because ⎣(1 + 2)/2⎦ = 1 and ⎣(2 + 1)/2⎦ = 1 ; 

(2, r – 2): 1|3, 1|4, 2|3 and vice versa - in total 3 + 3 = 6 cases (N2 = 6), since ⎣(1 + 3)/2⎦ 
= 2, ⎣(1 + 4)/2⎦ = 2 and ⎣(2 + 3)/2⎦ = 2; 

(3, r – 3): 1|5, 1|6, 2|4, 2|5, 3|4 and vice versa - in total 5 + 5 = 10 cases (N3 = 10); 

(4, r – 4): 1|7, 1|8, 2|6, 2|7, 3|5, 3|6 and vice versa - in total 7 + 7 = 14 cases (N4 = 14); 

………………………….. 
(i, r – i): in total Ni = (2i – 1) + (2i – 1) = 2(2i – 1) cases; 

…………………………… 

(r/2, r/2): 1|r - 1, 1|r, 2|r - 2, 2|r - 1, 3|r - 3, 3|r - 2, 1|r - 1, …, (r/2 – 1|r/2 + 1), r/2|r - r/2; 

in total 2(r – 1) cases. 
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Respectively, one gets: 

Ni = 2⋅2(2i – 1) = 4(2i – 1), 𝑖 = 1, 𝑟/2. 

𝑁 = ∑𝑟/2
𝑖=1 𝑁𝑖 = ∑𝑟/2

𝑖=1 4(2𝑖 − 1) = 4 ∑𝑟/2
𝑖=1 (2𝑖 − 1) = 8 ∑𝑟/2

𝑖=1 𝑖 − 4𝑟2 == 8 (𝑟2 + 1) 𝑟4 − 𝑟2= 𝑟2. 
So, 

 𝑃𝑖 = 𝑁𝑖𝑁 = 4(2𝑖 − 1)𝑟2 , 𝑖 = 1, 𝑟/2. (7) 

Thus, under the assumptions of [12] and r = n, one obtains 𝑔𝑀𝑒2(𝑛)|𝑑[1/𝑛,1/2] == ∑1/2
𝑑=1/𝑛 𝑃𝑑𝑛𝑔(𝑑) = 4𝑛2 ∑1/2

𝑑=1/𝑛
2𝑑𝑛 − 1−𝑑𝑑 − (1 − 𝑑)(1 − 𝑑) . (8) 

In graphical form, the dependence of the mean value gMe2(n) on g(d), at d ∈ [1/n, 1/2] 

and n even, is shown in Figure 3. 
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Figure 3. Dependence gMe2(n) 

at d ∈ [1/n, 1/2]. 

Figure 4. Dependence gMe3(n) 

at d ∈ [1/n, 1/2]. 

The function gMe2(n) is increasing, and starting with, approximately, n = 2048 it changes 

a little: from gMe2(2048) = 1.240550 ≈ 1.2406 (times) and up to gMe2(65536) = 1.242014 ≈ 
1.2420 (times). 

 

4.4. Mean-of-3 quicksort 

Me3 sorting assumes regroupings Mi,j,k with the average value of three elements, either 

j, k and l, used as the pivot (conventional) element u = (j + k + l)/3, (𝑗, 𝑘, 𝑙) = 1, 𝑟, 𝑗 ≠ {𝑘, 𝑙}, 𝑘 ≠ 𝑙: 
 𝑀𝑗,𝑘,𝑙 = (⌊𝑗 + 𝑘 + 𝑙3 ⌋, 𝑟 − ⌊𝑗 + 𝑘 + 𝑙3 ⌋) , (𝑗, 𝑘, 𝑙) = 1, 𝑟, 𝑗 ≠ {𝑘, 𝑙}, 𝑘 ≠ 𝑙. (9) 

In the Me3 sort, the variants of regrouping the list of r elements into two sublists are 

the same as in the Me2 sort. Likewise, only the cases of regroupings i ∈ [1, r/2], can be 

examined, but the obtained result will be multiplied by 2. For simplicity, the case of using 

three elements j, k and l to determine the respective pivot element will be noted j.k.l. In total, 

with the same three elements, there are 3! different variants distinguished by their order: j.k.l, 

j.l.k,  k.j.l,  k.l.j,  l.j.k, l.k.j and l.j.k. In the following, only the variants in ascending order of the 

constituent elements will be explicitly specified (i.e. j < k < l), and the obtained result will be 
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multiplied by 3! From the beginning of the list, in ascending order of the constituent elements 

and 𝑖 = 1, 𝑟/2 (the obtained result will be multiplied by 2⋅3!), we have the Me3 regroupings: 

(1, r – 1): in total there are N1 = 0 cases, because ⎣(1 + 2 + 3)/3⎦ = 2 > 1; 

(2, r – 2): 1.2.3, 1.2.4, 1.2.5 and 1.3.4, for each variant x.y.z of which ⎣(x + y + z)/3⎦ = 2 

occurs, i.e. 4 cases. Thus, in total there are N2 = 4⋅2⋅3! cases; 

(3, r– 3): 1.2.6, 1.2.7, 1.2.8, 1.3.5, 1.3.6, 1.3.7, 1.4.5, 1.4.6, 2.3.4, 2.3.5, 2.3. 6 and 2.4.5 

for each variant x.y.z of which ⎣(x + y + z)/3⎦ = 3 occurs, i.e. 12 cases. Thus, in total 

there are N3 = 12⋅2⋅3! cases; 

(4, r – 4): 1.2.9, 1.2.10, 1.2.11, 1.3.8, 1.3.9, 1.3.10, 1.4.7, 1.4.8, 1.4.9, 1.5.6, 1.5. 7, 1.5.8, 

1.6.7, 2.3.7, 2.3.8, 2.3.9, 2.4.6, 2.4.7, 2.4.8, 2.5.6, 2.5.7, 3.4.5, 3.4.6, 3.4.7, 3.5.6, for 

each variant x.y.z of which loc ⎣(x + y + z)/3⎦ = 4 occurs, i.e. 25 cases. Thus, in total 

there are N4 = 25⋅2⋅3! cases; 

and so on. 

Respectively, one gets: 𝑁𝑖 = {0, 𝑎𝑡 𝑖 = 0                                                                                         83!, 𝑎𝑡 𝑖 = 2                                                                                   𝑁𝑖−1 + 23! {2(𝑖 + 1)+ 52 (𝑖 − 3), 𝑎𝑡 𝑖 𝑜𝑑𝑑 2𝑖 + 52 (𝑖 − 2), 𝑎𝑡 𝑖 𝑒𝑣𝑒𝑛                  , 𝑖 = 3, 𝑟/2 . 
𝑁 = ∑𝑟/2

𝑖=1 𝑁𝑖 . 
𝑃𝑖 = 𝑁𝑖𝑁 , 𝑖 = 1, 𝑟/2. 

Thus, under the assumptions of [12] and r = n, one obtains 𝑔𝑀𝑒3(𝑛)|𝑑[1/𝑛,1/2] == ∑1/2
𝑑=1/𝑛 𝑃𝑑𝑛𝑔(𝑑) = ∑1/2

𝑑=1/𝑛
𝑃𝑑𝑛−𝑑𝑑 − (1 − 𝑑)(1 − 𝑑) . (10) 

In graphical form, the dependence of the mean value gMe3(n) on g(d), at d ∈ [1/n, 1/2] 

and n even, is shown in Figure 4. 

The function gMe3(n) is increasing, and starting with, approximately, n = 4096 it changes 

little: from gMe3(4096) = 1.107057 (times) to gMe3(65536) = 1.107254 (times). 
 

4.5. Mean-of-4 quicksort 

Me4 sorting assumes regroupings Mi,j,k,l with the average value of four elements, let j, 

k, l and m, used as the pivot (conventional) element u = (j + k + l + m)/4, (𝑗, 𝑘, 𝑙, 𝑚) = 1, 𝑟, 𝑗 ≠{𝑘, 𝑙, 𝑚}, 𝑘 ≠ {𝑙, 𝑚}, 𝑙 ≠ 𝑚: 𝑀𝑖,𝑗,𝑘,𝑙 = (⌊𝑗 + 𝑘 + 𝑙 + 𝑚4 ⌋, 𝑟 − ⌊𝑗 + 𝑘 + 𝑙 + 𝑚4 ⌋) , (𝑗, 𝑘, 𝑙, 𝑚) = 1, 𝑛, 𝑗 ≠ {𝑘, 𝑙, 𝑚}, 𝑘≠ {𝑙, 𝑚}, 𝑙 ≠ 𝑚. (11) 

In the Me4 sort, the variants of regrouping the list of r elements into two sublists are 

the same as in the Me2 sort. Likewise, only the cases of regroupings i ∈ [1, r/2], can be 

examined, but the obtained result will be multiplied by 2. For simplicity, the case of using 

four elements (j, k, l, m) to determine the pivot element respectively, j.k.l.m will be noted. In 

total, with the same four elements, there are 4! different variants that differ by the order of 

the constituent elements. In the following, only the variants in ascending order of the 

constituent elements will be explicitly specified (i.e. j < k < l < m), and the obtained result will 

be multiplied by 4! From the beginning of the list, in ascending order of the constituent 
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elements and 𝑖 = 1, 𝑟/2 (the obtained result will be multiplied by 2⋅4!), we have the Mo4 

regroupings: 

(1, r – 1): - in total there are N1 = 0 cases, because ⎣(1 + 2 + 3 + 4)/4⎦ = 2 > 1; 

(2, r – 2): 1.2.3.4, 1.2.3.5, for each variant x.y.z.w of which ⎣(x + y + z + w)/4⎦ = 2 occurs, 

i.e. 4 cases. Thus, in total there are N2 = 2⋅2⋅4! cases; 

(3, r – 3): 1.2.3.6, 1.2.3.7, 1.2.3.8, 1.2.3.9, 1.2.4.5, 1.2.4.6, 1.2.4.7, 1.2.4.8, 1.2.5.6, 1.2.5.7, 

1.3.4.5, 1.3.4.6, 1.3.4.7, 1.3.5.6, 2.3.4.5 and 2.3.4.6, for each variant x.y.z.w of which ⎣(x + y + z + w)/4⎦ = 3 occurs, i.e. 12 cases. Thus, in total there are N3 = 16⋅2⋅4! cases; 

and so on. 

Respectively, one gets: 𝑁𝑖 = {0, 𝑎𝑡 𝑖 =  1                        𝑁2 = 224!, 𝑎𝑡 𝑖 =  2  𝑁𝑖−1 + 𝑁𝑖 , 𝑖 = 3, 𝑛/2 . 
ΔNi = ΔNi-1 + 2⋅4!(i – 2)4⋅2 +2⋅4! {4, 𝑎𝑡 𝑖 = 3                             7, 𝑎𝑡 𝑖 =4                                    9, 𝑎𝑡 𝑖 = 3𝑗 + 5, 𝑗 = 0, 1, 2, . . . 12, 𝑎𝑡 𝑖 = 3𝑗 + 6, 𝑗 = 0, 1, 2, . . . 15, 𝑎𝑡 𝑖 =3𝑗 + 7, 𝑗 = 0, 1, 2, . .. , at 𝑖 = 3, 𝑟/2, 𝑁 = ∑𝑟/2

𝑖=1 𝑁𝑖 . 
𝑃𝑖 = 𝑁𝑖𝑁 , 𝑖 = 1, 𝑟/2. 

Thus, under the assumptions of [12] and r = n, one obtains 
 𝑔𝑀𝑒4(𝑛)|𝑑[1/𝑛,1/2] == ∑1/2

𝑑=1/𝑛 𝑃𝑑𝑛𝑔(𝑑) = ∑1/2
𝑑=1/𝑛

𝑃𝑑𝑛−𝑑𝑑 − (1 − 𝑑)(1 − 𝑑) . (12) 

 

In graphical form, the dependence of the mean value gMe4(n) on g(d) at d ∈ [1/n, 1/2] and n 

even is shown in Figure 5. 

 The function gMo4(n) is increasing up to, 

approximately, n = 2048, and then weakly 

decreasing. Thus, gMe4(2048) = 1.062616, 

gMe4(4096) = 1.062610 (times), gMe4(8192) = 

1.062604 (times) and gMe4(65536) = 

1.062598 (times). 
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Figure 5. Dependence of mean value 

gMe4(n) at d ∈ [1/n, 1/2]. 

Figure 6. Dependences of mean values gMe1(n),   

gMe2(n), gMe3(n), and gMe4(n) at d ∈ [1/n, 1/2]. 
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4.6. Mean-of-2-4 quicksort 

The Me2-4 quicksort is based on the results of comparing the Me1, Me2, Me3 and Me4 

sorts. As already mentioned, the approximate comparison of these sorts can be performed 

based on the mean value gMeK(n) of g(d) at d ∈ [1/n, 1/2]. For this purpose, Figure 6 shows the 

dependences gMe1(n), gMe2(n), gMe3(n), and gMe4(n) at d ∈ [1/n, 1/2]. 

According to Figure 6, Me2, Me3, and Me4 sorts are considerably more efficient (in 

terms of the number of operations required) than Me1, with the former's advantages over 

Me1 sort increasing significantly as n increases. Of course, the computation of the pivot 

elements requires additional computations, but at values of n not too small, they, already 

knowing the value of the pivot element, are much smaller than the total number of sort operations. 

In general, relationships take place 

 gMe1(n) > gMe2(n) > gMe3(n) > gMe4(n) (13) 

and 

 gMe1(n) – gMe3(n) > gMe2(n) – gMe3(n) > gMe3(n) – gMe4(n). (14) 

So, with the increase in the number K of elements, on the basis of which the pivot 

element is determined, the advantage of using a larger number of such elements decreases 

and may even be negative (due to the increase in the time needed to calculate the pivot 

elements). Thus, relationships can be expected to occur 

 gMeK(n) – gMe(K+1)(n) > gMe(K+1)(n) – gMe(K+2)(n), K = 1, 2, 3, … (15) 

Therefore, it may not be appropriate to use too large values for K. However, the use of 

Me4 sorting might be appropriate in some cases, especially at relatively large values of n. For 

this purpose, only the dependences of the mean values gMe2(n), gMe3(n) and gMe4(n) of g(d), at d ∈ [1/n, 1/2] are shown in Figure 7. 
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Figure 7. Dependences of mean values 

gMe2(n), gMe3(n), and gMe4(n) at d ∈ [1/n, 1/2]. 

Figure 8. Dependences of differences  

gMeK(n) – gMe(K+1)(n) at K = {2, 3}. 

From Figure 7 it can be seen that the value of gMeK(n) with increasing K stabilizes (to 

some extent) at lower values of n.  

A clearer quantitative difference in the efficiency of different sortings is presented by 

the value of the differences gMeK(n) – gMe(K+1)(n), K = 1, 2, 3, … For K = 1, K = 2 and K = 3, some 

of these are shown in Figure 8 and Table 1.  
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Since for the sorts Me1, Me2, Me3 and Me4 the sorting times T(n, 1/2) are 

approximately equal, the sizes 100(gMeK(n) – gMe(K+1)(n)), K = 1, 2, 3 means, roughly, how much 

(in %) the Me(K+1) sort is more efficient than the MeK sort. 

From Table 1 it can be seen that the differences gMe1(n) – gMe2(n), gMe1(n) – gMe3(n), gMe1(n) 

– gMe4(n), gMe2(n) – gMe3(n) and gMe3(n) – gMe4(n) are increasing with respect to n, the first three 

of which, at n = 65536, reach considerable values, respectively (approximately): 1.628, 1.762 

and 1.807. So only at very small values of n can it be reasonable to use the Me1 sorting over 

the Me2 one. At the same time, if the difference gMe2(n) – gMe3(n) is relatively large, constituting 

(approximately) 0.133 at n = 1024 and 0.135 at n = 65536 (i.e. a reduction of the laboriousness 

of sorting by more than 13%), then the gMe3(n) – gMe4(n) is not negligible in some cases, being 

(approximately) 0.044 at n = 1024 and 0.045 at n = 65536 (i.e. a reduction in sorting 

laboriousness of more than 4.4%).  

Table 1 

Absolute value of differences gMeK(n) – gMeL(n)  

n 
gMe1(n) – 

gMe2(n) 

gMe1(n) – 

gMe3(n) 

gMe1(n) – 

gMe4(n) 

gMe2(n) – 

gMe3(n) 

gMe3(n) – 

gMe4(n) 

8 0.169002 0.243352 0.262709 0.074350 0.019357 

16 0.299643 0.390807 0.421634 0.091164 0.030827 

32 0.438706 0.544349 0.579620 0.105643 0.035271 

64 0.578794 0.695242 0.732756 0.116448 0.037514 

128 0.715023 0.838784 0.878588 0.123761 0.039804 

256 0.844680 0.973064 1.014813 0.128384 0.041749 

512 0.966614 1.097782 1.140836 0.131168 0.043054 

1024 1.080642 1.213428 1.257245 0.132786 0.043818 

 2048 1.187120 1.320822 1.365054 0.133702 0.044232 

4096 1.286613 1.420823 1.465270 0.134210 0.044448 

8192 1.379800 1.514288 1.558846 0.134488 0.044558 

16384 1.467298 1.601936 1.646549 0.134638 0.044614 

32768 1.549702 1.684419 1.729061 0.134717 0.044642 

65536 1.627536 1.762296 1.806952 0.134760 0.044656 

 

Of course, the laboriousness of the sorting algorithms depends on the particularities 

of the implementation (programming language, computer, etc.). In approximate calculations, 

the laboriousness of operations will be considered (in conventional operations): of reading a 

number - c operations; of adding two numbers - a operations; of comparing two numbers - a 

operations; of exchange with the place of two elements - s operations; of dividing two 

numbers - h operations; of determining the position of the middle element of a list for the 

Me3 sorting - two operations of reading the positions of the first and last elements of the list, 

an operation of addition and an operation of division of two numbers (truncated to integers), 

so in total a + 2c + h operations; of determining the positions of two non-marginal elements 

positioned at approximately equal distances from the neighboring elements (out of the four) 

in the list for the Me4  sorting – three addition operations, six read operations and one divide 

operation, so a total of 3a + 6c + h operations. 
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Under these assumptions, the consideration of operations with the determination of 

the pivot element can be carried out in the following way. Let the list/sublist, at the given 

sort step, consist of r elements and, in the case of sorting: 

- Me1, the last element of the list is taken as the pivot element u. Only one read 

operation is then required, i.e. c conventional operations (conv. ops.); 

- Me2, to determine the pivot (conventional) element u, the first and last elements of 

the list are taken. Then two read operations are required, one operation to add the two 

elements and one operation to divide; so in total a + 2c + h conv. ops.; 

- Me3, to determine the pivot (conventional) element u, the first, last and middle 

elements of the list are taken. Then there are required: one operation to determine the 

position of the middle element, three read operations, two operations to add the three 

elements and one divide operation; so in total a + 2c + h + 3c + 2a + h = 3a + 5c + 2h 

conv. ops.; 

- Me4, to determine the pivot (conventional) element u, the first, last and two non-

marginal elements positioned at approximately equal distances from the neighboring 

elements (among the four) in the list are taken. Then it is necessary: an operation to 

determine the positions of the two non-marginal elements, four reading operations, 

three operations to add the four elements and a dividing operation; so in total 3a + 6c 

+ h + 4c + 3a + h = 6a + 10c + 2h conv. ops. 

Given the pivot element, it remains to determine the number of operations with 

regrouping the list/sublist of r elements into two sublists. Let the list of r elements be sorted 

in ascending order. The pivot element u (in the Me1 sort last in the list, and in the Me2, Me3 

and Me4 sorts - a conventional element that is considered not to be contained in the list) is 

compared with the list elements as in the basic Quicksort. That is, the pivot element is 

consecutively compared with the elements at the beginning of the list until an element, say 

j, greater than the pivot is identified, then with the elements at the end of the list until an 

element, say k, smaller than the pivot is identified, and subsequently, the two elements thus 

identified change with the place; the process continues in the same way until all r – 1 (at 

Me1) or r (at 2, Me3, and Me4) elements have been compared. At each comparison of the 

pivot element u with another element there can be two options, each of probability 1/2: j < u 

or j > u, respectively, k < u or k > u. If j < u or k > u, then each comparison has two read 

operations (of elements u and j or u and k, respectively) and a comparison operation of the 

two elements - a total of 2c + a conventional operations, since the elements j and k remain 

in place. But if j > u and k < u, then each comparison has two read operations (of elements u 

and j or u and k, respectively), one comparison operation of the two elements and 0.5 

exchange operations with the place of elements j and k - in total 2c + a + 0.5s conventional 

operations. In the case of sorting Me1 at the end, additionally, the pivot element will be 

swapped with the first element in the second sublist – a total of 2 read operations and a 

swap operation with the place of two elements. 

So, if the pivot element is known, the number of conventional operations with 

regrouping the list/sublist of r entities into two sublists is roughly equal to (r – 1)(a + 2c)/2 + 

(r – 1)(a + 2c) + 0.5s)/2 = (r – 1)(2a + 4c + 0.5s)/2 on Me1 sort (since the pivot element is an 

element of the list) and with r(a + 2c)/2 + r(a + 2c + 0.5s)/2 = r(2a + 4c + 0.5s)/2 conv. ops. on 

sorts Me2, Me3, and Me4 (since the pivot element is a conventional one and is considered 

not to correspond to any element of the list). 
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Thus, the total number (RMeK) of conventional operations with the regrouping of the 

list/sublist of r entities into two sublists is approximately: 

- RMe1(r) = (r – 1)(2a + 4c + 0,5s)/2 + c, when Me1 sorting; 

- RMe2(r) = r(2a + 4c + 0,5s)/2+ a + 2c + h, when Me2 sorting; 

- RMe3(r) = r(2a + 4c + 0,5s)/2 + 3a + 5c + 2h, when Me3 sorting; 

- RMe4(r) = r(2a + 4c + 0,5s)/2 + 6a + 10c + 2h, when Me4 sorting.  

Let’s determine at what values of r it is appropriate to use each of the sorts under 

discussion. Broadly speaking, using the MeK sort is as time complexity as using the Me(K+1) 

sort at 

 GMe(K+1),K(r) = (RMe(K+1)(r)  – RMeK(r))/RMeK(r) = gMeK(r) – gMe(K+1)(r). (16) 

Example 1. Let: a = 1 conv. ops.; c = 0.5a; h = s = 3a. 

Then RMe1(r) = 2.75r – 2.25 conv. ops.; RMe2(r) = 2.75r + 5 conv. ops.; RMe3(r) = 2.75r + 11.5 

conv. ops. and RMe4(r) = 2.75r + 17 conv. ops. 

Based on Eq. (16), we obtain: (RMe2(r) – RMe1(r))/RMe1(r) = 7.75/(2.75r – 2.25) conv. ops.; 

(RMe3(r) – RMe2(r))/RMe2(r) = 6.5/(2.75r + 5) conv. ops.; (RMe4(r) – RMe3(r))/RMe3(r) = 5.5/(2.75r + 11.5) 

conv. ops.. Then, taking into account the data of Table 1, it can be concluded that, 

approximately, it is appropriate to use the sorting: Me1 at r ≤ 12, Me2 at 12 < r ≤ 21, Me3 at 
21 < r ≤ 46 and Me4 at r > 46. At the same time, in [9] it is shown that for r ≤ 9 instead of Mo3 
sorting it is appropriate to use Insertionsort. This result can also be extended to Me3 sorting, 

mostly close to Mo3, and MeK sorting, respectively. So, for sorting Me1 only 10 ≤ r ≤ 12 
remains - very small area. 

Thus, one can roughly conclude that for lists/sublists of size: 

- r ≤ 9 is appropriate to use Insertionsort; 
- 10 ≤ r ≤ 21 it is appropriate to use Me2 sorting; 
- 22 ≤ r ≤ 46 it is appropriate to use the Me3 sorting; 
- r > 46 it is appropriate to use the Me4 sorting. 

Based on the result of Example 1, it may be appropriate the Mean-of-2-4 sorting which 

for lists/sublists of size r uses: Insertionsort at r ≤ 9, Me2 sort at 10 ≤ r ≤ 21, Me3 sort at 22 ≤ 
r ≤ 46, and Me4 sort at r > 46. Also, if the initial list of elements is known to contain multiple 

equal elements then the Mean-of-2-4 sort can be combined with the Regrouping-3 sort. 
 

5. Comparing Median-of-three and Mean-of-3 quicksorts 

The version of Mo3 sort proposed in [8], for sublists of size r ≤ 9, uses Insertionsort. 
That is why when comparing Mo3 and Me3 sorts it is appropriate to consider the same 

conditions, i.e. whether Insertionsort is used or not. Either in both use Insertionsort at r ≤ 9. 
Also, for the list of elements to be sorted described in Section 4.1, the procedures used 

to determine the pivot elements lead to the same regroupings of lists into sublists. So, the 

time complexity difference between Mo3 and Me3 sorts for each list/sublist is only 

determined by the number of operations required to determine the pivot element. In turn, 

the two procedures for determining the pivot element differ only in that in the case of Mo3, 

after determining the three elements, they are sorted and the middle element is used as the 

pivot element; while in the case of Me3, after determining the three elements, their 

arithmetic mean is calculated, which serves as the pivot element. 

Thus, the number of operations required to determine a pivot element in the Mo3 and 

Me3 sorts differs only at the last stage: in Mo3 – sorting the three elements, and in Me3 – 

calculating the arithmetic mean of the three elements. When Mo3 sorting, for the three-
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element sorting procedure described in [14], on average, 10.5 operations to read one element 

and 3 operations to compare two elements are required – in total, at the complexities of the 

operations used in Example 1, 8.25 conventional operations. In Me3 sorting, for the procedure 

of calculating the arithmetic mean of three elements, 3 operations of reading an element, 2 

operations of addition and one operation of division are required - in total, at the complexities 

of operations used in Example 1, 6.5 conventional operations. 

So, when determining a pivot element, the Me3 sort requires 1.75 fewer conventional 

operations than the Mo3 sort. Given that the Me2-4 sort is preferable to the Me3 sort, the 

number of sort operations, when using the Me2-4 sort and the list of elements to sort 

described in Section 4.1, is even smaller compared to the Mo3 sort. It should also be noted 

that for some lists of elements to be sorted, different from the one described in Section 4.1, 

in some cases the pivot elements of the Me3 sort may be more successful, and for others - 

the pivot elements of the Mo3 sort may be more successful and, respectively, the solutions 

obtained. That is why, in specific cases, it may be appropriate to make the comparison in 

question through computer simulation. 
 

6. Conclusions 

By combining the Median-of-three and Regrouping-3 quicksort methods, the Joint 

quicksort is proposed, which allows reducing the volume of calculations both for lists of equal 

elements and for lists of already ordered elements or in reverse order. Also is introduced the 

category of Mean-of-K (MeK) quicksort algorithms that differs from the Median-of-three sort 

[9] by determining the pivot element as the mean of K elements, positioned, in the list to 

regroup, at approximately equal distances among them. For the basic Quicksort method (Me1) 

under some assumptions, g(d) dependencies are analyzed – how many times the sorting time 

T(n,d) is greater than the time T(n,1/2) at d ∈ [1/n, 1/2]. The laboriousness of the Me1 sort 

increases relatively slowly as d decreases from 0.5 (the ratio between the sizes of the two 

derived sublists is 1:1) to approx. 0.1 (the ratio in question is 1:9). 

For the comparative analysis of Me1, Me2, Me3, and Me4 methods, the average value 

(gmed(n)) of g(d) at d ∈ [1/n, 1/2] is determined. The calculation results show that the 

dependencies gMe1(n), gMe2(n), gMe3(n), and gMe4(n) at d ∈ [1/r, 1/2], where gMeK(n) is gmed(n) on 

MeK sorting, are increasing, that is, the efficiency of quick sort decreases as the number of 

elements of the initial list increases. At the same time, this growth is slower and slower, 

especially at higher values of K. Thus: gMe1(1024) ≈ 2.320, gMe1(2048) ≈ 2.428 and gMe1(65536) 

≈ 2.870; gMe2(1024) ≈ 1.239, gMe2(2048) ≈ 1.241 and gMe2(65536) ≈ 1.242; gMe3(1024) ≈ 1.106, 

gMe3(2048) ≈ 1.107 and gMe3(65536) ≈ 1.107; gMe4(1024) ≈ 1.063, gMe4(2048) ≈ 1.063 and 

gMe4(65536) ≈ 1.063. Moreover, Eqs. (13) hold, i.e. the sorts with the higher K value, at K ∈ {1, 

2, 3, 4}, are more efficient regarding the time of sorting. 

Since for K ∈ {1, 2, 3, 4}, the sorting time T(n,1/2) practically does not depend on K, 

the quantities 100(gMeK(n) – gMe(K+1)(n)), K = 1, 2, 3 means, roughly, how much (in %) the time 

of the Me(K+1) sort is faster than that of the MeK sort. As a result of calculations, it is found 

that the differences gMe1(n) – gMe2(n), gMe2(n) – gMe3(n) and gMe3(n) – gMe4(n) are increasing, 

reaching at n = 65536 values, respectively (approximately): 1.628, 0.135 and 0.045. So, at n = 

65536, using Me4 sorting allows to reduce the sorting time by approx. 4.5% compared to 

Me3, which is sometimes not negligible. 

The results of the comparison of Median-of-three and Mean-of-3 sorts show that the 

Mean-of-3 sort requires fewer calculations with the determination of pivot elements and, 
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respectively, could also reduce the time of the sort. Of course, Mean-of-2-4 sorting could 

reduce this time even further. At the same time, cases are not excluded when the Median-of-

three quicksort could be more efficient than the Mean-of-3 quicksort or even the Mean-of-2-

4 quicksort, if the pivot elements in the Median-of-three quicksort, for the respective lists of 

elements, would be significantly more successful. Such cases could be identified by computer 

simulation. 
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