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ABSTRACT 

We present a new direction in the indirect Boundary Element Method (BEM), based on discontinuous solutions. 

These solutions were obtained by Prof. Moraru Gheorghe by applying the generalized Fourier transform to the 

differential equation of plates. Using these solutions as Green Influence functions we can solve plate bending 

problems that other analytical and numerical methods have no solution or have solving difficulties, for example: 

plates of arbitrary shapes and types of support, different loads, the presence of defects etc. For the proposed 

method, we performed a numerical implementation of the discontinuous solutions and developed a computational 

program in the Matlab programming language. In order to highlight the effect of transverse shear deformations on 

the deflection in Reissner-Mindlin plate theory, using this program, we calculated the displacements and stresses 

in square plates for different ratios of thickness to side length. The obtained results were compared with the Finite 

Element Method (FEM) and with analytical solutions (Fourier trigonometric series) in the classical plate theory. 

Keywords: Boundary Element Method; discontinuous solution; Green function; Reissner; Mindlin; plate. 

 

INTRODUCTION 

One of the most used numerical method in different areas (mechanics of deformable body, the mechanic 

of a liquid, magnetic fields etc.) is the finite element method (FEM) [6]. This method possesses a number 

of advantages in comparison with other methods: flexibility, easy for programming, is effective for 

nonlinear problems etc. At the same time FEM has some disadvantages. For example: a massive system 

of linear equations, necessity of big initial data, requires big volume of computer memory, difficulties in 

solving problems that present: stress concentrations, defects, contact problems, connecting plate (shell) 

elements with bars etc. 

Recently the boundary elements method (BEM) intensively develops [1-3]. In BEM the discretization 

is applied only to the edge of the plate that reduce the number of nodes and elements, also reducing the 

size of the system of linear equations by one unit. The solutions inside the domain are continuous and 

provide more accurate results. 

In the theory of plates and shells there are two approaches to obtain the integral equations: direct and 

indirect. The direct method [2, 12] which is based on fundamental solutions does not allow satisfying 

every possible boundary condition on the edge. 

For the indirect BEM [10, 16] is offered a new approach which is based on discontinuous solutions. 

These solutions give the possibility to formulate the integral equations or systems of integral equations 

for various cases of plates and shells. The method allows to consider the behavior of the solutions in 

singular points and it is suitable for problems of the theory of plates and shells with defects (cracks, 

elastic or rigid inclusions etc.). 
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

2 

 

We present the discontinuous solutions for plates in Reissner-Mindlin plate theory [5-11]. In classical 

theory of plates [15], the fourth order differential equation for deflection of the mid-plane allows us to 

satisfy only two conditions along each edge instead of three. The impossibility of satisfying more than 

two conditions is caused by the neglect of the transverse deformations. And this leads to the appearance 

of reactions concentrated in the corners of the plates. For thin plates, neglecting the transverse shear 

deformations practically does not affect the results, but for thick plates, as the ratio of thickness to side 

length increases, this can have a considerable influence. 

MATERIALS AND METHODS 

1. Governing equations in Reissner-Mindlin plate theory. 

Consider an infinite plate of thickness h. According to Reissner-Mindlin plate theory the deflection w 

of the mid-plane is governed by a system of two differential equations. 

h2 2   

Dw  q  
10 1  

q;
 (1)

 

  
10
  0, 




h 

where Δ is the Laplacian, q is the transverse load per unit area; D  Eh
3 
/ 12 1 2  s the flexural 

rigidity, E and ν are Young’s modulus and Poisson’s ratio, respectively; ψ is the stress function. 

The first differential equation of the system allows to satisfy only two conditions for each side.  

The second one represents the supplementary equation that offers the possibility to satisfy one more 

condition. 

2. The solutions due to the concentrated jumps. 

Let us suppose that in the infinite plate on the axis y (x = 0) (fig. 1) there is a defect (crack, plastic 

hinge, inclusion etc.). When passing from one side of the defect x  0 the other x  0 e displacement 

w, the slope angles θ
x 

and θ
y
, the bending moment M

x
, the twisting moment M

xy 
and the shear force Q

x
 

could have jumps. For these jumps we introduce the following notation: 

w0, y   w0, y  

x 0, y  x 0, y  

 y 0, y   y 0, y  

w y  ; 

x  y  ; 

 y  y  ; 

 

 

 

 
(2) 

Mx 0, y   Mx 0, y  

M xy 0, y   M xy 0, y  

Mx  y  ; 

M xy  y  ; 

Qx 0, y   Qx 0, y   Qx  y  .  

 

 

 
Fig. 1. Infinite plate with a defect. 

 

The solutions due to the concentrated jumps we obtain by applying the generalized Fourier transform 

[14] to equations (1) on supposing that q(x,y) = 0. 

The relation between concentrated jumps and displacements can be written in the following form: 
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 

nt 

xy Q 





 

    w y  


 w x, y    g11 

 

g12 

 

g13 

 

g14 

 

g15 




g16  



x  y  
   y  




   x, y 
 
  g g g g g g    

 y 
, 

  x    21 22 23 24 25 26   
M

  y   (6)    x, y   g g g g g g     x 

  y    31 32 33 34 35 36   
  M 

xy     
y   

Q   y  



 x 





the relations between jumps and efforts are given by: 
 

    w y  
 M   x, y   t t t t t t 

 
 

 
x 

  
11 12 13 14 15 16 

 
 x  y  

 M y  x, y   t21 t22 t23 t24 t25 
t26  


   y  




M  x, y 
 
 t t t t t t   

 y 
, 

 xy  
 

31 32 33 34 35 36 
 
 

M
 

 

 y  





(7) 

 Qx  x, y   t41 t42 t43 t44 t45 
46 

 Q  x, y  t t t t t t  
 

M  y 
 y   51 52 53 54 55 56  




xy 

Qx   y   





where elements g
ij 
and t

ij 
are given: 

 

  1 x D 1   x3 
 3xy

2
 1 

3 




 (8) 

g11   
2 r 

2 
; ; t11   




 
r6  

2 xy
2 
K0 r  ; 

 


3. The efforts in plates with arbitrary boundary 

Using the solutions due to the concentrated jumps as Green functions [4, 13] by superposition we can 

obtain the discontinuous solutions for the defect placed on the contour L (fig. 2). 

Using the coordinate transformation from the local system of coordinates x, y 
o the local system (n,t) we can write: 

 

w
* 
(P)  w  P, Q dsQ ; 

L  * (P)    P, Qcos     P, Qsin   ds ; 

n    x y  Q 

L  * (P)    P, Qsin     P, Qcos   ds ; 

t   x y  Q 

L              (9) M * (P)    M   P, Qcos2   M    P, Qsin2   2M  P, Qcos  sin  ds ; 

n  
L 

x y xy  Q 

M 
* 
(P) 

M 
L 

y  P, Q  Mx  P, Q cos  sin   M  P, Qcos2   sin2  ds  ; 

Qn (P)   Qx   P, Qcos   Qy   P, Qsin   dsQ , 
L 
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where     

hese solutions also can be used for solving basic problems of plate bending. In these cases, the 

boundary will be considered as a defect into an infinite plate. By approaching the edge from the inside 

of the region occupied by the plate, the jumps will be considered equal to the values on the boundary. 

When approaching the edge from the outside these jumps will be considered zero. 

 
 

 

Fig. 2. Local systems of coordinates on contour L. Fig. 3. Plate of arbitrary shape. 

 
4. Numerical implementation of discontinuous solutions in BEM. 

Consider a plate of arbitrary shape (fig. 3). On the edge L
1 
the plate is simply supported, on L

2 
– 

clamped and on L
3 
– free. 

To obtain integral equations, the deformable state of the plate is presented as a sum of two states. The 

first one (marked with a circle) due to the transversal loads. The second (marked with an asterisk) due to 

the concentrated jumps on the line L of the defect. 

The boundary conditions are: 

− for simply supported edge (L
1
) 

w*  wo  0; M *  M o  0; M *  M o  0; 
n n nt nt 

 

− for clamped edge (L
2
) 

w*  wo  0;  * 
  o 

 0;  * 
  o 

 0; 
n n t t 

 

 

− for free edge (L
3
) 

M *  M o  0; M *  M o  0; Q*  Qo  0. 
n n nt nt n n 

 

The solutions due to transversal load depend of the type of the load. For example, if the plate is 

loaded by a force F in the point with coordinates a
0
, b

0
, then: 

 

wo   F  g   xm   a , ym   b  ; 
i 16 i 

 



0      i 0 

M o    F n2 M o   n2 M o    2n n M o     F n
2t xm   a , ym   b    n2t xm   a , ym   b    2n n t xm   a , ym   b   , (10) 

ni x       xi y       yi x    y       xyi x 16 i 

 



0      i 0 y 26 i 0      i 0 x y 36 i 0      i 0 
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ij 

ij 

ij j ij nj ij tj ij nj ij ntj ij nj ni L 2 

 ij j ij       nj ij tj ij nj ij ntj ij nj ni L3 

 

where n
x 
= cosα şi n

y 
= sinα 

For other loading cases the solutions can be obtained by integrating the expressions (10). 

If we discretize the contour L into a set of constant elements we obtain the following system of 

equations: 
 

 
 w

1     
w         w

2             w
3           w

4    
M    w

5    
M       w

6    
Q      w

o 
; i  n  , n 

 ij j ij       nj ij       tj ij nj ij ntj ij nj i L1      L 2 

 j nL 3 


j nL1 ,nL 3 j nL1 ,nL 3 j nL 2 j nL 2 j nL1 ,nL 2 

   n1 w    n 2     n3     n 4 M    n5 M    n6 Q   o ; i  n 
 j nL 3 


j nL1 ,nL 3 j nL1 ,nL 3 j nL 2 j nL 2 j nL1 ,nL 2 

   
t1    

w          
t 2              

t 3           
t 4    

M    
t 5    

M       
t 6    

Q       
o 
; i  n  

 
ij j ij nj ij tj ij nj ij ntj ij nj ti L 2 

 
j nL 3 

  m1 w 

j nL1 ,nL 3 

 

m2 

j nL1 ,nL 3 

 

m3 

j nL 2 

  m4 M 

j nL 2 

  m5 M 

j nL1 ,nL 2 

 

m6 Q 

 
 M o ; 

 
i  n , n 

(11) 

 ij j ij       nj ij       tj ij nj ij ntj ij nj ni L1 L3 

 
j nL 3 j nL1 ,nL 3 j nL1 ,nL 3 j nL 2 j nL 2 j nL1 ,nL 2 

 
 h

1    
w         h

2   
         h

3    
       h

4   
M    h

5    
M       h

6    
Q     M 

o  
; i  n  , n 

 ij j ij        nj ij       tj ij nj ij ntj ij nj nti L1      L3 

 j nL 3 

 
 q1 w 

j nL1 ,nL 3 

 

q2 

j nL1 ,nL 3 

 

q3 

j nL 2 

  q4 M 

j nL 2 

  q5 M 

j nL1 ,nL 2 

 

q6 Q 

 
 Qo . 

 
i  n 

 j nL 3 j nL1 ,nL 3 j nL1 ,nL 3 j nL 2 j nL 2 j nL1 ,nL 2 

where the elements w
1
 

2 

ij 

, ... , q
6
 

can be obtained by integrating the solutions from concentrated jumps on the length of the element. 

For example: 

 
w

1   
    g   x

m 
, y

m  
 d


  

;  n1 
 c g   x

m 
, y

m  
   s g 

 
    

x
m 

, y
m  
 d ; 

 
  

 (12) 

ij  11 

l j 

i i ij   21 i i 

l j 

31 i i 

where c = cosγ, iar s = sinγ. 

By solving the system of equations (11) all the jumps on the boundary will be known, so that the 

displacements and the efforts in any point inside the plate can be calculated, these being expressed by 

the obtained jumps. For example, if it is necessary to calculate the displacement at any point K from the 

interior of the plate, the expression take the form: 

 
w    g w     g    g    g M   g M      g Q  w

o 
. 

k  11 j  12 nj 

j nL 3   j nL1 ,nL 3 ,nLd 

13 tj 14 

j nL1 ,nL 3 j nL 2 

nj 15 

j nL 2 

ntj 16 nj k 

j nL1 ,nL 2 

(13) 

 
In the same maner, at any point, can be obtained the expresions for slope angles, moments and shear 

forces. 

 

RESULTS 

Based on the discontinuous solutions, a calculation program was developed in the Matlab programming 

language. 

We examine a square plate, simply supported, loaded by a force F in the center (fig. 5). Using this 

program, we calculated the deflections (fig.6) and efforts in Reissner-Mindlin plate theory for different 

ratios of thickness to side length (h/a). The plate boundary has been discretized into 20 constant elements 

(fig. 4, a). The obtained results were compared with the FEM for a mesh 20x20 elements (fig. 4, b) and 

with analytical solutions (Fourier trigonometric series) in the classical plate theory. 
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Fig. 4. Plate mesh: a) BEM; b) FEM. 
 

 

Fig. 6. Deflection field w for h/a=0.01. Fig. 5. Simply supported square plate. 

 
The results obtained on a central section (y = 0) using all three methods are illustrated, for comparison, 

in the form of diagrams (fig. 7) for different ratios h/a. 

a) b) 
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c) d) 

 

Fig. 7. Values of deflections on a central section for ratio: a) h/a = 0,01; b) h/a = 0,1; c) h/a = 0,15; d) h/a = 0,2. 

 
These deviations as well as the values of the deflections are presented in table 1. 

Table 1. Results and deviations 
 

 
h/a 

Classic theory 

(Fourier series) 

Reissner-Mindlin theory 

FEM (20x20 elem.) BEM (20 elem.) 

w w Δw, % w Δw, % 

0,01 13,36 13,35 0,07 12,85 3,8 

0,1 13,30 16,41 23,4 15,00 12,8 

0,15 3,95 5,78 46,3 5,47 38,5 

0,2 1,67 2,95 100,0 2,88 72,5 

 
 

DISCUSSION 

From the diagrams above (fig. 7) we observe that with the increase of the ratio h/a the influence of 

the transverse shear deformations, on the deflections becomes more and more pronounced. For thin 

plates with ratio h/a < 0,01 these shear deformations practically do not affect the deflections and the 

results by all three methods almost match. Shear effect is increasing near the point of application of the 

concentrated force. As recommended by the specialized textbooks, for ratios h/a > 0,1, this influence can 

no longer be neglected, as the deviations are considerable compared to the classical theory. 

CONCLUSION 

In this paper, we present the indirect boundary element method based on discontinuous solutions 

for plates in Reissner-Mindlin theory. The proposed method allows us to solve: plate bending problems 

in classical and Reissner-Mindlin theory, plates of arbitrary shapes and types of support, with different 

loads, the presence of defects etc. One of the main advantages of the BEM is that the discretization is 

applied only to the edge of the plate reducing the size of the system of linear equations by one unit, 

leading to a minimal use of computer resources. Also, the solutions inside the domain are continuous 

and provide more accurate results. 

The discontinuous solutions, described in this paper, present a new direction in the field of mechanics 

of solids. The computing program developed on these solutions can be recommended to engineers to 

solve practical plate bending problems. 
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