MD.102.	
Title	Technology of oriented growth of anisotropic single- crystal Bi films in a strong electric field.
Authors	Leonid Konopko, Albina Nikolaeva, Ana Kobylianskaya, Gheorge Para
Institution	Ghitu Institute of Electronic Engineering and Nanotechnologies, Chisinau MD-2028, Moldova Republic of
	INTERNATIONAL EXHIBITS

EUROINVENT 2021

Patent no.

The patent has been prepared for submission.

The invention relates to the field of materials science and nanotechnology, and more precisely to the possibilities of obtaining single-crystal Bi films with predetermined parameters. The objective of the invention is to develop a technology for recrystallization of thin Bi films with the final aim to obtain the necessary orientation of the main crystallographic axis C₃ of the film. The proposed method is based on our patent on the recrystallization of a glass-coated bismuth microwire in a strong electric field (Patent No.MD 1409 Y 2019.12.31). The anisotropic heat flux sensor manufactured using this technology had a high sensitivity (10⁻² V/W), but the glass coating greatly increased the time constant ($\tau = 0.5$ s). Another anisotropic heat flux sensor architecture based on the film technology will reduce the time constant by about 4 orders of magnitude. In the proposed technology, a Bi film deposited on a thin glass substrate is placed inside a capacitor consisting of a glass plate coated with a semitransparent conductive layer and a copper plate. A strong electric field is created inside the capacitor, $E = 8x10^3$ V/cm. A moving focused laser beam melts the bismuth film pointwise; in the air flow, the melted regions crystallize with the direction of the main crystallographic axis C₃ of the film in the direction of the electric field. The proposed recrystallization technology in a strong electric field is the main and necessary component in the creation of anisotropic thermoelectric energy converters based on a single-crystal Bi films.

Description EN

Class no. 14