

Excitonic spectra and energy band structure of ZnAl₂Se₄ crystals

N. N. Syrbu, V. V. Zalamai, A. V. Tiron, I. M. Tiginyanu

https://doi.org/10.1016/j.optmat.2015.09.035

Abstract

Absorption, reflection and wavelength modulated reflection spectra were investigated in ZnAl₂Se₄ crystals. The energy positions of ground and excited states for three excitonic series (A, B and C) were determined. The main parameters of excitons and more precise values of energy intervals $V_1(\Gamma_7)-C_1(\Gamma_6)$, $V_2(\Gamma_6)-C_1(\Gamma_6)$, and $V_3(\Gamma_7)-C_1(\Gamma_6)$ were estimated. Values of splitting due to crystal field and spin–orbital interaction were calculated. Effective masses of electrons (m_{C1}*) and holes (m_{V1}*, m_{V2}*, m_{V3}*) were estimated. Reflection spectra contours in excitonic region were calculated using dispersion equations. Optical functions for $E > E_g$ from measured reflection spectra were assigned on the base of Kramers–Kronig relations.

Keywords: chalcogenide semiconductors compounds, excitons, band structure, reflection and transmission spectra, Kramers–Kronig analysis

References

- H. Bach *et al.* Growth of single crystals of rare earth chalcogenides J. Cryst. Growth (1983)
- 2. S. Mishra *et al.*Electronic and structural properties of AAl₂Se₄ (A = Ag, Cu, Cd, Zn) chalcopyrite semiconductors
 J. Solid State Chem. (2011)
- 3. E. Gross *et al.* Polariton emission from crystals Solid State Commun. (1972)
- 4. A.N. Georgobiani *et al.* Wide-gap A^{II}B₂^{III}C₄^{VI} semiconductors: optical and photoelectric properties, and potential applications
 Sov. Phys. Semicond.(1985)
- S.I. Radautsan *et al.* Defect engineering in II-III₂-VI₄ and related compounds Jpn. J. Appl. Phys. (1993)
- 6. L.K. Samanta *et al.* Electronic and nonlinear-optical properties of some mixed thiogallates, selenogallates, and

Optical Materials

Volume 49, November 2015, Pages 319-324

tellurogallates as candidates for laser device applications Phys. Rev. B (1989)
7. Tae-Young Park *et al.* Optical properties of ZnAl₂Se₄, ZnAl₂Se₄:Co²⁺, and ZnAl₂Se₄:Er³⁺ single crystals J. Appl. Phys. (1998)

There are more references available in the full text version of this article.