
6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 344

The application of transition diagrams in data
handling processes modeling

Magariu Nicolae

Moldova State University
magariu@usm.md

Abstract. The method of data handling processes modeling by means of transition diagrams and

transition diagram systems is considered. As well as the method of program specification construction on
base of dynamic model representation described as a transition diagram or transition diagram system is
analyzed. The structure of applications framework elaborated by means of transition diagram systems is
proposed.

Index Terms: transition diagrams, transition diagram systems, functional modeling of data handling
processes, applications framework

I. THE PROBLEM CONTEXT AND THE PROBLEM

The process of applications development depends on
the complexity of the problem solved by this application
and it includes obligatory the phase of their modeling-
designing [1, 2]. To get a preliminary estimate of the
complexity of the technology that can be applied in
concrete imperative Software Product (SP) development a
problem classification depending on three main problem
characteristics V, S, and E has been proposed [3]:

V - the volume of the data that would be processed by
future SP; S - the specification level of domain data
handling processes; E - the efficiency of the technological
model applicable on corresponding SP development
process.

Intuitively, the value diapasons have proposed for
each characteristic V, S and E.

The proposed diapasons for V characteristic: V1 – less
then 100 MB, V2 – from 100 MB up to 1GB, V3 - more
then 1 GB.

The proposed diapasons for S characteristic: S1 – a
data handling processes have specified with the help of
algorithms, S2 – a processes are not specified with the
help of algorithms but there are mathematical models that
can be applied to specify domain data handling processes,
S3 – a processes are not specified with the help of
algorithms and the formal models that can be applied to
specify domain data handling processes do not exist.

The proposed diapasons for E characteristic: E1 –
technological models based on using the specialized tools,
for example EXCEL, 1C, SGBD, etc., E2 – technological
models based on using structural and/or object-oriented
programming systems, E3 – technological models based
on using of generic programming principles and CASE
systems.

Arranging these values in three-dimensional table we
obtain 27 classes of problems which are shown in Table
1. In every class of problems the families of similar
problems can be pointed out. These problems can be
solved with the help of one typical technological model.

So, after formulating the problem, the class and the
family of the problem must be determined, and the
possibility of applying corresponding technological
model must be studied.

Table 1. Problems classes

 V1S1 V1S2 V1 S3
E1: V2S1 V2S2 V2 S3
 V3S1 V3S2 V3 S3

Within the structured programming paradigm, two
functional methodologies of data handling processes
modeling are used: DFD (Data Flow Diagram) and SADT
(Structured Analysis and Design Technique) [2].
Frequently, within these methodologies the main attention
is taken to static models of applications considering that
their dynamic model must be elaborated on coding phase.
But the dynamic model of application is very important on
designing phase. The importance of dynamic model of the
SP is determined by the following circumstances:

 V1S1 V1S2 V1S3

E2: V2S1 V2S2 V2S3
 V2S1 V3S2 V3 S3

 V1S1 V1S2 V1S3

E3: V2S1 V2S2 V2S3
 V2S1 V3S2 V3 S3

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 345

1) The dynamic model is represented graphically and
it is studied, evaluated and modified by non-
programmers.

2) Basing on dynamic model the corresponding SP
specification is constructed.

The automatic conversion of SP dynamical model into
program specification is a problem of great practical
interest.

Within the structured programming paradigm the
dynamic model of a SP can be represented in one of the
following forms: structured algorithm scheme, multilevel
State Transition Diagram (STD) proposed by Yourdon
and Transition Diagram (TD) [2,4].

The representation of the dynamic model of SP as a
structured algorithm diagram is not quite suitable in case
of modeling a complex data handling processes which
requires the frequently user’s intervention.

The multilevel STDs are not described formal and one
meets some difficulties on its converting into the program
specification.

The application of TD for dynamic model
representation of the SP was investigated insufficiently.
Partially the simple TDs are used on modeling of the
event oriented applications [2, 5].

II. THE CONCEPT OF DATA HANDLING
PROCESSES DYNAMIC MODEL
REPRESENTATION BY MEANS A TD

In the formal languages theory, Transition Diagrams

(TDs) are used for Finite Automata (FA) graphical
representation [6]. It is known that a Finite Automata
(FA) is the formal machinery for sentences recognition/
accepting of the defined language L, as well as it is
considered as a transducer [6]. Here we consider the using
of TDs for data handling processes and SPs dynamic
model representation.

We will treat as an event an activity of data handling
which will be executed by SP. We will consider that every
event e has a name which identifies this event and every
event is being realized by a subprogram f.

A TD is considered as a graph (V, U), where V is a set
of vertices (nodes), and U – a set of oriented edges (arcs).
This graph can be represented graphically.

A vertex v (vєV) is being represented graphically by a
circle with a number inside. It represents an automata
state of waiting events. The TD has one start vertex and it
has a number 0 or 1. This start node represents start state
of FA. A TD can have one or more final states. The final
node is being represented graphically by double circle
with a number inside.

An edge u (uєU) is an arrow (or arc) which connects
two nodes. It can be defined as a pair of nodes. First node
from this pair is the beginning of the arc, and second node
– the end of the arc. An arc represents a transition from
the beginning nod to the end node of the arc. It can be
labeled with the name of the event. The label of the arc
represents the event which has to be executed before
transition.

A complete path of TD graph defines the events
execution order of the defined list of events. Obviously
that any complete path of TD graph must contain at least
one labeled edge.

Obviously only deterministic TDs (or Deterministic
FAs (DFAs)) can be used for dynamic modeling of SP.

2.1 Methodological aspects of TDs elaboration The input alphabet of a DFA represented as a TD
can be constructed during the specifying functional
requirements to the SP. A functional requirement is
described in more detailed way with the help of a
scenario. The domain expert participates actively in
description of scenario. On analyzing the scenario that
corresponds to functional requirement the necessary
activities (events) are distinguished and the functional
requirement is specified as a list of event names. Events
are registered in two-dimensional table (events
dictionary), which contains three columns and multiple
rows. The first column contains the event name, the
second – short textual specification of the activity
associated with event name, and the third column -
prototypes of subprograms realizing corresponding
activity (event).

While specifying functional requirements a two-
dimensional table (requirements dictionary) is used. It
includes three columns and multiple rows. The first
column contains the requirement names; the second
column - the list of events that specify corresponding
requirement and the third column contain short textual
specifications of the requirement.

Construction of the events and requirements
dictionaries as well as the verification of their correctness
is one of the most important phases of the TD
construction process.

The general principle of TD construction consists in
representation of one functional requirement as the unique
complete path of TD. If lists of event names specifying
different requirements have common parts then two or
more complete paths of TD graph can coincide partially.

III. THE GENERAL DESCRIPTION OF THE

ELABORATION PROCESS OF A SIMPLE SP

Input string of a deterministic DT is a list of event
names which represents a specification of a functional
requirement to the SP. A deterministic TD is built in such
way that it accepts only input strings which represent
functional requirements to the SP.

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 346

The general method of SP dynamic model elaboration
as a TD includes following activities:

1. Elaboration and representation of each functional
requirement as a list of events. (The set of all lists of
events which represents functional requirements to
the SP is considered as a language L of DFA)

2. Construction of the deterministic DT (or DFA)
which accepts L language.

Let us assume that all functional requirements to the
SP had represented as lists of events and the suitable
deterministic TD had elaborated.

The algorithm of Functional Requirement
Interpretation (FRI) is proposed.

3.1 The general description of the FRI algorithm

//Data description

S – Events queue.
Q – Variable, which keeps the number of current state

(number of TD vertex) of the TD.

X – Variable, which keeps the event name read from
S.

//Description of the used function

eread(X) function realizes the transferring the event
name from S to X.

//The main part of the FRI algorithm

…

While (the node from Q is not final node)
if (an arc leaving the current node and

labeled with the event name from
variable X exists)

 {Execute the subprogram, which
corresponds to event name from
variable X;

Assign the number of arc end node to
variable Q;

eread(X)}

…

The FRI algorithm has the following important
characteristics:

1) The algorithm work is controlled by TD.

2) The algorithm doesn’t depend on TD.

3) The list of event names (or the prefix of this list)
which specifies a functional requirement is an
input parameter for the algorithm, and concrete
elements of this list can be pointed at algorithm’s
run-time.

>From characteristics 1) - 3) it results that the
algorithm FRI algorithm is invariant relative to any DT.
But separate TD must be elaborated for every concrete
problem.

The characteristic 3) demonstrates that users can
control the computing process in the limits defined by TD.

Let’s assume that the FRI.C function was constructed
in C language. Then for constructing concrete SP one
must elaborate dynamic model of this SP in the form of
deterministic TD and represents it in acceptable form for
AFRI.C function. In that case AFRI.C function can be
considered as an applications framework.

IV. THE ASSOCIATION MODE OF TDs INTO TDS.
CONSTRUCTION AND USAGE OFTDS

Let’s assume that the TD has been constructed.
Obviously, the FRI algorithm will function only if the
subprograms realizing events have been already modeled
and constructed. Some of these subprograms can be very
complex. While modeling this subprograms one from
three methods can bee used: modeling with the help of
structural algorithm schemes, modeling with the help of
multilevel state transition diagrams, and modeling with
the help of TD. The selection of the dynamic model
representation for corresponding subprogram depends on
peculiarities of computing process being modeled. Thus,
when the process is completely controlled by actors,
modeling with the help of TD will be more convenient.

The case when a subprogram f realizing the event e
can be modeled with the help of a TD is of great interest.
Let’s consider that there is an arc of the current TD
labeled with event name e and the dynamic model of
subprogram f is represented by new TD. While modeling
the appropriate subprogram f by means of other TD, the
current TD should be changed. Two variants of current
TD changing should be considered in this case:
1) Substitution of the arc labeled with e name with the

new TD which models the subprogram f.
2) Changing the arc label e with the name of new TD

which models the subprogram f.
The substitution of the current TD’s arc with the TD

leads to the more complex current TD which can become
very difficult for analyzing.

The second variant points out the formal way of TDs
association and leads to representation of the application
dynamic model as a TDS.

A TDS represents a TD set. Each TD from this set has
unique name. Edges of each TD can be labeled by an
event name or by a TD name from the set of TD names.
The pointed out TD from the set of TDs is marked out as
a main TD. The main TD represents the general dynamic
model of the complex SP. Other TDs from the set
represent the dynamic models of complex SP subsystems.

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 347

The representation of the complex SP dynamic model
with the help of TDS is more convenient since each TD of
the TDS can be elaborated and analyzed separately.

It must be mentioned that the TDS notion was
proposed and used by M. Conway [7]. Conway had
proposed to specify the syntax of formal languages by
means of TDS and had elaborated the diagrammer
(compiler) controlled by TDS. David Bruce Lomet had
studied the Conway’s diagrammer and had proved
diagrammer’s equivalence to a restricted Deterministic
PushDown Acceptor (DPDA) called a nested DPDA [8].
He had established that the class of nested DPDA’s is
capable of accepting all deterministic context-free
languages. The author studied Conway’s TDS and
diagrammer and elaborated a special class of TDS
allowing the diagrammer to function in a deterministic
way. This class of TDS was applied in the APL interpreter
construction and for data processing modeling [9].

Fig.1 The model of TDS elaboration

The dynamic model representation of complex SP by
means of TDS correlates very well with the top-down
designing of complex SP. The dynamic model of complex
SP can be represented by a TDS containing a main
diagram named SP_name and TDs for all subsystems. The
main diagram specifies the general behavior of the
complex SP subsystems. It contains the arcs marked with
the names of transition diagram from TDS. The TD of a
subsystem specifies its behavior. A TD for each
subsystem is elaborated applying the concept described in
the compartment 2.1.

The general description of the processes of TDS
construction is shown in the fig.1.

During TDS elaboration it is very important to ensure
a deterministic transition from one state to another in each
TD from the TDS. The constraints on TD structure
providing deterministic transitions in each TD from a
TDS were elaborated in [10].

The algorithm interpreting the functional requirement
to the complex SP was constructed. It was named

FRITDS and it is shown in Appendix A. Some important
characteristics of the FRITDS algorithms:
1) The FRITDS algorithm is controlled by DTS.
2) The FRITDS algorithm covers the FRI algorithm.

V. THE GENERAL DESCRIPTION OF THE

ELABORATION PROCESS OF COMPLEX SP

The complex SP elaboration process includes the
following phases:

- The construction (in the programming language) of
the AFRITDS function which corresponds to the
algorithm AFRITDS;

- The construction of DTS representation accepted by
AFRIS function.

It must be mentioned:
1) The AFRITDS function is constructed only one

time for all SP.
2) A DTS is an input parameter for AFRIDS function.
The DTS must be constructed for each concrete

problem. But the construction of TDS for the problem
from a family of problems can be done by modifying the
TDS of other problem from this family.

Conclusions
The stated results can serve as theoretical base for

building the tool kit for automatic construction of
complex SPs modeled with the help of TDS. TDS is a
suitable method for modeling the service oriented SP.

APPENDIX A
The general description of the FRITDS algorithm

//Date description
S – Events queue.
X – The variable keeping the current

event name.
i – The variable keeping the number of

current DT from TDS. The main TD of
the TDS has the number 0.

q - The variable keeping the current
node number of current TD of TDS.

//General description of the algorithm
steps

//The main diagram is fixed as the current
TD
ST1. i = 0;

//The initial nod of current TD is fixed.
ST2. j = 0;
ST3. Put the list of events names or the

prefix of this list in events queue;
ST4. eread(X);
ST5. while (the current node is not the

final node of the main
diagram)

 {while (the current node is not the
final node of the no main
diagram)

 if(exist the arc marked with
event name keeping in X)

 {Execute the subprogram
corresponding to the event
name from X;

 Execute the transition -change
the value of variable j;

 eread(X);}
 else
 if (exist the diagram

The textual specification of the functional
requirements to the complex SP

The elaboration of the static model of
complex SP

The elaboration of the TDS structure

The textual specification of the functional
requirements to the subsystems

The event oriented specification of the
functional requirements

The construction of the TDS

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 348

accepting the event name
keeping in X)

 {Memorize variables i and j
in stack;

 Assign to variable i the
number of selected TD;
j=0;}

 else
 if(exist the non marked

arc)
{Execute the transition on
this arc by assigning to
variable j the
corresponding value}

ST6. Set up the values of variables i
and j using values from the stack;

ST7. Execute the transition on the arc
marked with the name of passed TD;

 }

REFERENCES

[1] Magariu N. Algorithmic description and

programming. CEP USM, Chisinau, 2005. – 75 p. (in
Romanian)

[2] G. S. Ivanova. Programming Technology. Moscow,
Bauman N. E. PTR. 2002. - p. 320 (in Russian)

[3] Magariu N. “Some generalization about applications
development process.” The collection of scientific
articles ”Information Systems Design” of ”Information
Systems in Economy” and ”Computing Systems and
Programming” departments of State Engineering and
Economic University of St. Petersburg. St. Petersburg,
2006. – pp. 145-152. (in Russian)

[4] http://yourdon.com/strucanalysis/wiki/index.php?title

 =Chapter 13

[5] Stephen Ferg. Event-Driven Programming: Introduc-
tion, Tutorial, History. Version 0.2 – 2006-02-08.
http://Tutorial_EventDrivenProgramming.sourceforge.
net

[6] Hopcroft J., Motwani R., Ullman J. Introduction to
Automata. Theory, Languages and Computation. MA:
Addison-Wesley, 2001. —521 p.

[7] Melvin E. Conway. “Design of a separable transition-
diagram compiler.” Communications of the ACM,
Volume 6, Issue 7 (July 1963). -pp. 396–408.

[8] David Bruce Lomet. “A Formalization of Transition
Diagram Systems”, Journal of the ACM (JACM) V.
20 , Issue 2 (April 1973). -pp. 235–257.

[9] Magariu N.A. “The application of transition diagrams
on interactive programming system implementation.”
Mathematical researches of Moldova Science
Academy, issue 107. The theory and practice of
programming. Chisinau, Stiinta, 1989. -pp. 100–110.
(In Russian)

[10] Magariu N. “The representation method of a complex
software system dynamic project.” Computer Science
Journal of Moldova, V. 16, Nr. 2(47), Kishinev, 2008. – pp.
223-239.

