
6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 302

I. INTRODUCTION
Software tools for implementation new constrained-

random VHDL features were presented on the web seminar
that was held in spring 2009 [1]. “Are randomization codes
synthesizable?” - was one of the main questions asked by
the web participants. “No, they are not attempted to be
what so ever. It’s strictly a task of match thing” – was the
answer.

In this paper the software tools, called RandGen, for data
structures, inference rules and weight distribution
description for constrained-random VHDL-templates
generation are proposed and analyzed. The results of
microprocessor and microcontroller constrained-random
verification are also presented in this paper.

II. PRELIMINARY
In this section is described the methodology of synthesis

data structures for randomization. In our interpretation the
term “constrained-random” is referred not only to
randomization, but also for signing the structural
(syntactical) as well as algorithmic (semantic) constrains.

When designing a constrained-random (CR) generator
for microprocessors and microcontroller (MP) verification,
the objective of test generation process is the synthesis of
test programs with a specific syntax. In terms of formal
linguistics, constraints on the structure of instructions as
well as on its sequence in the test programs, are called
syntactic. The syntax of instructions is formally determined
in the specification of instructions set of unit under
verification (UUV).

Syntax of the test program (TP) is generally determined
by the coverage of UUV structural elements and data flows.
From this point of view some MP instructions load the data
in the memory’s elements, others - process or/and unload
the data from them [2]. Thus, the rule of definition of TP
syntax can be formulated by the next paradigm:

“data load → inherently data process →
unload (and analysis) of results”. (1)

Rule (1) expresses also the semantic aspect of the
objective of CR test program generation. Or, rule (1)

reflects the stochastic generation process of test programs
with data dependency and can be accepted as a link
between functional (behavioral) model of the MP [2] and
rules of synthesis the TP generator, proposed in [3, 4].

Except test program syntaxes when describing the
generator behavior (test bench) it is required an “event-
driven” simulation refereed to the unit under verification
(UUV) reaction on events, such as internal and external
interrupts and others. Such kind of constrains can be
undoubtedly attributed to semantic ones. In addition, the
test-designer must know the technology peculiarities of CR
generations of test programs at constrains level as well as at
the implementation level of TP generator.

So, when designing a TP constrained random generator,
the test-designer must have, on one hand, advanced
facilities that would provide high degree of freedom for
describing various stochastic processes of generation, and
on the other hand, the test-designer must have a full
specification of the verified device in order to present
possible syntactic, semantic and probabilistic (stylistic)
constraints “imposed” on the process of generation of test
programs. In terms of formal linguistics such kinds of
constrains can be explicitly expressed by a stochastic
grammar

III. DEFINITION OF CONSTRAINED-RULES
A regular stochastic grammar is defined by a 5-tuple

G=(VN, VT, S, Φ, P(Φ)) where VN and VT are sets of non
terminal (syntactic class) and terminal symbols,
respectively. S is the starting symbol, S ∈VN. Φ is a finite
set of rules of the form α→β, where |α|≤ |β|, α∈VN, and β
has the form aB or B, where α∈VT, and β∈VN. P(Φ) is a
distribution of probabilities (weights) supported by the
rules of Φ.

Let consider an example with non-stochastic grammar
G1=({S, A, B, C}, {a, b}, S, Φ) and Φ is the set of rules
(productions): Φ ={S → aB, B → bC, C → aC | aS | b},
where symbol | signs the alternative rule. The grammar G1
generates a language L starting from symbol S. A sentential
form is any derivative of the unique symbol S. The
language L generated by the grammar G is the set of all
sentential forms whose symbols are terminal. In grammar

Constrained-Random Verification for Synthesis:
Tools and Results

Abstract — This paper presents the tools for automation the synthesis of constrained-random generator for
verification the synthesizable designs of microprocessors and microcontrollers. The structure of constrained-random
generator is coded by a stochastic grammar that is defined using the elaborated tools. Various constrained-random
parameters, inclusively simulation coverage, can be estimated thanks to correspondence between stochastic grammar and
the Markov chain. The performed test experiments have showed that the apriori estimations and aposteriori test results
are in good agreement..

Index Terms — constrained-random, microcontroller, microprocessor, verification.

Diana Bodean, Ghenadie Bodean, Olga Ghincul
Technical University of Moldova

gbodean@gmail.com

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 303

G1 the sentence abab has the following derivation:

S ⇒ aB ⇒ abC⇒ abaC⇒ abab. (2)

Remarks: in stochastic grammar the alternative rules will
be labeled with transition probabilities (weights). For
example, bCaSCaCC ppp →→→ 321 ,, are the
weighted rules, where p1 + p2 + p3 =1.

In MP CR verification a sentence can specify an
instruction as well as a test program. From the point of
view of the paradigm (1) the objective of MP constrained
random verification is generation of a finite language with
maximum coverage of predefined confidence level. So, the
coverage performance (i.e. the test quality) of CR-
verification is estimated by stochastic language length.

As it is known that parsing the rules can be represented
by a syntax tree [5]. A syntax tree is an important aid to
understanding the syntax of a sentence. More generally,
any sentential form, i.e. test program, has a syntax tree. The
average height of syntax tree defines the length of CR
generated TP.

Further, a scenario of the stochastic grammar definition
will be presented on the example of PIC16C5x
microcontroller (see specification on
www.microchip.com). Each PIC16C5x instruction is a 12-
bit word divided into an operation code OPCODE, which
specifies the instruction type, and one or more operands,
which specify the operation of the instruction.

Figure 1 shows four general formats that the instructions
can have, where, for byte-oriented instructions, ‘f’
represents a file register designator and ‘d’ represents a
destination designator, and for bit-oriented instructions,
‘b’ represents a bit field designator which selects the
number of the bit affected by the operation, while ‘f’
represents the number of the file in which the bit is located.
For literal and control operations, ‘k’ represents an 8- or
9-bit constant or literal value.

Formats shown in figure 1 define, in fact, the syntax of
microprocessor instructions and in the same time specify
the way of “assembly” the instruction: a random value
(std_logic_vector) of constant, literal, or registers with
a deterministic value of the code operation OPCODE.

In order to obtain an optimal (i.e. minimum) height of
syntax trees the PIC16C5x instruction set must be divided
in 7 subsets: Gr1, … Gr7, that forms the set of terminal
symbols of generation grammar. In the RandGen
terminologies the terminal symbols are called lexemes. The
lexeme’s names and decimal values are introduced in the

lexemes list window (see figure 2), where Mask(⋅) specifies
(by log.1) instruction bits which will be assigned by a
random values. The set of lexemes is saved in the ROM

entity that is an inherited component of the CR template.

IV. CONSTRAINED-RANDOM TEMPLATE
The RandGen-application can be viewed as a mediator

between the test-designer and CAD-tools that facilitates
and automates the constrained-random generator
specifications. The rules of stochastic grammar, that will
sequence lexemes, are introduced in the grid-window
(Figure 3).

In the standard grammar format the table from Figure 3
without lexemes can be rewritten as:

BA → 998,0 , BA → 002,0 , DB → , JC → ,

ED → 3,0 , FD → 2,0 , GD → 05,0 ,

HD → 25,0 , ID → 2,0 ,

DE → 9/1 ,…, DE → 9/1 ,

DF →
6/1

, …, DF → 6/1 ,

DG → , DH → 7/1 , …, DH → 7/1 ,
AI → , KJ → , AK → (3)

It should be remarked that grammar (3) and weighed
rules, e.g. D→ … in (3), are equivalent to the randomized
case-statement in VHDL [1, 6] as:

variable RV: RandomPType;
⋅ ⋅ ⋅
--specifies just weight
RandVal:=RV.DistInt((207,138,23,161,125));
⋅ ⋅ ⋅
when D=>
 case RV.RandVal(1,2,3,4,5) is
 when 1=> Lexem< =Mask8bit; NextState<=E;
 when 2=> Lexem<= Mask5bit; NextState<=F;
 when 3=> Lexem<= Mask10bit;NextState<=G;

Figure 2. Lexemes list window

11 6 5 4 0
OPCODE d f(FILE#)

-- Byte-oriented file
-- register operations

11 8 7 5 4 0
OPCODE b(BIT#) f(FILE#)

-- Bit-oriented file
-- register operations

11 8 7 0
OPCODE k(literal)

-- Literal and control
-- operations

11 9 8 0
OPCODE k(literal)

-- GOTO
-- instructions

Figure 1. PIC16C5x instructions general format

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 304

 when 4=> Lexem<= Mask0bit; NextState<=H;
 when 5=> Lexem<= Masl8bit; NextState<=I;
 end case;
when E=> ⋅ ⋅ ⋅

Distribution is introduced in weights window, shown in

Figure 4. Moving the slider of trackers the test-designer
performs weights definition. The weight Window also
allows resizing the weights scale (right-top button in the
Figure 4).

As the rules and weights are specified it remains only to
click the button save to generate the corresponding VHDL-
entities. An RTL-block diagram of instantiation the
constrained random generator is shown in figure 5. The
reset input (low level) initializes the RandGen generator
that “operates” on rising edge of the clock signal clk. The
output standard logic signal RndBit is a bit of the Counter
Linear FeedBack Shift Register (LFSR), which is used as a
random source. The low level of the Ready output
indicates that the random code RndCode is generated.
Simultaneously with RndCode a corresponding new Item
and Lexeme is also generated.

From viewpoint of formal grammar, the variable Item is
a non-terminal symbol. The set of items are predefined in
the RandGen tools.

V. DESIGNING A CR–TEST BENCH
Undoubtedly, the synthesis of a constrained-random

generator is more sophisticated then it was presented in the

Figure 5. Typical constrained-random generator RTL-diagram

Figure 3. RandGen User Interface

Figure 4. Weights specification Window

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 305

previous section. At first, it is needed to outline that the
constrained-random generation is performed iteratively
from the start item (as the item A in example) to the final
item (as the item F) and so one: from A to A via F.

In VHDL–language this sentence is equivalent to the
following loop-statement:

Gen: -- repeat until done
while TestActive loop
 case State is
 when A => ⋅ ⋅ ⋅ Next state <= B;

⋅ ⋅ ⋅
 when K => ⋅ ⋅ ⋅ Next state <= A;
 end case;
end loop;

Secondly, the process of instruction “assembling” should

be performed as simple as possible (more acceptable, in the
same manner, i.e. containing same steps or operations).
This specific peculiarity in the CR generation for synthesis
is caused by the fact that a random value obviously can be
“obtained” by any time of clock. One should mention that
the probabilistic (weighted) transition is timing cost.

A simple scheme for instruction assembly is next
proposed. Figure 6 shows the block-diagram of one stage
conventional hierarchical “assembler”.

Typically, at first, the masked value of LESR is assigned
to flip-flop DFF, when signal CTRL is logic ‘0’, and,
secondly, if ctrl = ’1’ then lexeme’s bit is “entered” in the
DFF where mask value was equal to ‘0’ (the designer must
memorize this specific way of assembling the instruction!)

Thirdly, CR generator controls exclusively the
generation of stimuli or in other words stimuli generation is
controlled via UUV, e.g. when a verified unit generates an
interrupt.

Lastly, the test-designer should implement a more
complex generation process that is equivalent, for example,
to a context-sensitive grammar where transitions are
conditioned not only internally, but also by the external
events (e.g. interrupt signals).

A CR test bench with the stochastic non-contextual
generation may be implemented as following:

library ieee; use ieee.std_logic_1164.all;
use work.PIC16C5_pkg.all;
use work.RandGen_pkg.all;

entity TestBench is port (…)
end entity;

architecture TestBench of TestBench is
begin
⋅ ⋅ ⋅
end;

Working folder contains the CR generator package
PIC16C5_pkg, generated by proposed RandGen tools.
Test-designers should only instantiate the generator and
connect it to UUV. In the user test bench a UUV is
instantiated by mapping the port interface, e.g. UUV:
CR_PIC16 port map (rst=> rst, clk=> clk, Item=> Item,
clkItem=> clkItem, Lexeme=> Lexeme, LFSR=> LFSR,
RndBit=> RndBit, Ready=> Ready, RndCode=>
RndCode).

VI. TEST EXPERIMENTS AND RESULTS
After creating the input signal waveforms we proceed to

simulations of the PIC16C5 test bench project. The aim of
simulations is to estimate the toggle coverage that depends
on test length.

Using Time End command of Quartus software we have
scheduled the test bench simulation and recorded
simulation coverage. Such test experiments were
performed with different weight distributions. Figure 7
plots the obtained results. Curve 1 is plotted for the
generator with equiprobable transition or uniform
distribution on grammar rules; graphic 2 is plotted for the
test experiment with a nonunoform weights, and graphic 3
is plotted for the test experiment with optimized weights.
The optimization of distribution was performed applying
the maximum entropy criteria as follows.

Let In be the set of test sequences, e.g. instructions, test
programs etc., generated at step n. From [7, 8] is known
that a priori estimation of test length n of a constrained-
randomly generated stimuli depends on its probabilities pi
as:

{ } λ−
≥

1
1ln

min
1

ii
p

n , (4)

where λ is a predefined confidence level; typically λ≥ 0,95.
From Equation (4) results that for same (unchanged)

confidence level the test performance can be improved by
maximizing the minimum value of n-step probabilities.
This task can be solved in the following way. In (4) the
distribution P(In)={pi | i∈ In} is calculated from
Kolmogorov-Chapman matrix equation of Markov chain,
obtained by adequately converting the corresponding
stochastic grammar. Further, applying the dynamic
programming (Bellman) and searching for maximization
the entropy of finite Markov chain, the minimum
probability at step n can be found. In our analysis the
MatLab software was used for calculation the n-step
distribution and solving the optimization (i.e. maximin)
problem. So, for the count of grammar loop, equal to 2
(depth of PIC16 stack) was found the optimal distribution
over grammar rules, shown in (3).

VII. CONCLUSION
In this paper were presented tools for generation of

VHDL-templates and “ready” entities of the constrained-

Figure 6. Block diagram of DFF with
multiplexing input

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 306

random generator for synthesis. The proposed tools can be
viewed as an intermediate stage between built-in (V)HDL
randomization constructs and resulting logic, implemented
in PLD. In the paper was outlined that not only
randomization constructs must be developed, but the
technology of creating test benches that uses constrained-
random generator must be also developed. In this sense, the
formal grammar and stochastic process’ fundamentals are
helpful and well suited.

For the future work we intend to elaborate tools for
synthesis of state machine diagrams associated with
generation grammar.

Constrained-random test experiments with
microprocessors and microcontrollers show a good
correlation between the theoretical model and practical
results. Thus, the test-designer is already equipped
theoretically as well as practically for constrained random
verification of complex logic design

REFERENCES

[1] J. Lewis, “Constrained Random Verification with
VHDL”, 2009 [Online available:
www.SynthWorks.com].

[2] S.M.Thatte, and J.A.Abraham “Test generation for

microprocessors”, IEEE Trans. Comput. C-29, No. 6,
1980, pp. 429–441.

[3] L.-M.Wu, K.Wang, and C.-Y.Chiu, “A BNF-Based
Automatic Test Program Generator for Compatible
Microprocessor Verification”, ACM Trans. on Design
Automation of Electronic Systems, vol.9, No. 1, 2004.,
pp. 105-132.

[4] Gh.Bodean, “Microprocessor verification by

syntactically controlled generation of the test
programs”, Meridian ingineresc, TUM, Kishinau,
No.2, 2008, pp. 18-25.

[5] K.S. Fu, Syntactic Methods in Pattern Recognition,

New York, Academic Press, 1974.

[6] J. Lewis, “Accellera VHDL-TC Extensions-SC

Randomization,” 2007. Available: http://
www.accelera.org/ apps/group_public/ download.php/
905/Randomization-V1.pdf.

[7] I. F. Klistorin, V. I. Borshchevich, S. N. Filimonov,

E. V. Morshchinin and V. F. Gushan, “Metrological
support of information measuring systems for
stochastic functional checkout systems of
microprocessor devices”, Measurement Techniques,
Springer, New York, Vol. 32, No. 11, 1989, pp- 1048-
1052.

[8] R. David, Random testing of digital circuits: Theory

and applications, CRC Press, 1998.

Figure 7. Simulation coverage versus test length:
1 – uniform weights distribution;
2, 3 – nonuniform weights distribution.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6

1

3 2

Time, µs

Coverage

