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I. INTRODUCTION 
Software tools for implementation new constrained-

random VHDL features were presented on the web seminar 
that was held in spring 2009 [1]. “Are randomization codes 
synthesizable?”  - was one of the main questions asked by 
the web participants. “No, they are not attempted to be 
what so ever. It’s strictly a task of match thing” – was the 
answer.  

In this paper the software tools, called RandGen, for data 
structures, inference rules and weight distribution 
description for constrained-random VHDL-templates 
generation are proposed and analyzed. The results of 
microprocessor and microcontroller constrained-random 
verification are also presented in this paper. 

II. PRELIMINARY 
In this section is described the methodology of synthesis 

data structures for randomization. In our interpretation the 
term “constrained-random” is referred not only to 
randomization, but also for signing the structural 
(syntactical) as well as algorithmic (semantic) constrains. 

When designing a constrained-random (CR) generator 
for microprocessors and microcontroller (MP) verification, 
the objective of test generation process is the synthesis of 
test programs with a specific syntax. In terms of formal 
linguistics, constraints on the structure of instructions as 
well as on its sequence in the test programs, are called 
syntactic. The syntax of instructions is formally determined 
in the specification of instructions set of unit under 
verification (UUV). 

Syntax of the test program (TP) is generally determined 
by the coverage of UUV structural elements and data flows. 
From this point of view some MP instructions load the data 
in the memory’s elements, others - process or/and unload 
the data from them [2]. Thus, the rule of definition of TP 
syntax can be formulated by the next paradigm: 

“data load → inherently data process → 
unload (and analysis) of results”. (1) 

Rule (1) expresses also the semantic aspect of the 
objective of CR test program generation. Or, rule (1) 

reflects the stochastic generation process of test programs 
with data dependency and can be accepted as a link 
between functional (behavioral) model of the MP [2] and 
rules of synthesis the TP generator, proposed in [3, 4]. 

Except test program syntaxes when describing the 
generator behavior (test bench) it is required an “event-
driven” simulation refereed to the unit under verification 
(UUV) reaction on events, such as internal and external 
interrupts and others. Such kind of constrains can be 
undoubtedly attributed to semantic ones. In addition, the 
test-designer must know the technology peculiarities of CR 
generations of test programs at constrains level as well as at 
the implementation level of TP generator. 

So, when designing a TP constrained random generator, 
the test-designer must have, on one hand, advanced 
facilities that would provide high degree of freedom for 
describing various stochastic processes of generation, and 
on the other hand, the test-designer must have a full 
specification of the verified device in order to present 
possible syntactic, semantic and probabilistic (stylistic) 
constraints “imposed” on the process of generation of test 
programs. In terms of formal linguistics such kinds of 
constrains can be explicitly expressed by a stochastic 
grammar 

III. DEFINITION OF CONSTRAINED-RULES 
A regular stochastic grammar is defined by a 5-tuple 

G=(VN, VT, S, Φ, P(Φ)) where VN and VT  are sets of non 
terminal (syntactic class) and terminal symbols, 
respectively. S is the starting symbol, S ∈VN. Φ is a finite 
set of rules of the form α→β, where |α|≤ |β|, α∈VN, and β 
has the form aB or B, where α∈VT, and β∈VN.  P(Φ) is a 
distribution of probabilities (weights) supported by the 
rules of Φ. 

Let consider an example with non-stochastic grammar 
G1=({S, A, B, C}, {a, b}, S, Φ) and Φ is the set of rules 
(productions): Φ ={S → aB, B → bC, C → aC | aS | b}, 
where symbol | signs the alternative rule. The grammar G1 
generates a language L starting from symbol S. A sentential 
form is any derivative of the unique symbol S. The 
language L generated by the grammar G is the set of all 
sentential forms whose symbols are terminal. In grammar 
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G1 the sentence abab has the following derivation:  

S ⇒ aB ⇒ abC⇒ abaC⇒ abab. (2) 

Remarks: in stochastic grammar the alternative rules will 
be labeled with transition probabilities (weights). For 
example, bCaSCaCC ppp →→→ 321 ,,  are the 
weighted rules, where p1 + p2 + p3 =1. 

In MP CR verification a sentence can specify an 
instruction as well as a test program. From the point of 
view of the paradigm (1) the objective of MP constrained 
random verification is generation of a finite language with 
maximum coverage of predefined confidence level. So, the 
coverage performance (i.e. the test quality) of CR-
verification is estimated by stochastic language length. 

As it is known that parsing the rules can be represented 
by a syntax tree [5]. A syntax tree is an important aid to 
understanding the syntax of a sentence. More generally, 
any sentential form, i.e. test program, has a syntax tree. The 
average height of syntax tree defines the length of CR 
generated TP. 

Further, a scenario of the stochastic grammar definition 
will be presented on the example of PIC16C5x 
microcontroller (see specification on 
www.microchip.com). Each PIC16C5x instruction is a 12-
bit word divided into an operation code OPCODE, which 
specifies the instruction type, and one or more operands, 
which specify the operation of the instruction. 

Figure 1 shows four general formats that the instructions 
can have, where, for byte-oriented instructions, ‘f’ 
represents a file register designator and ‘d’ represents a 
destination designator, and for bit-oriented instructions, 
‘b’ represents a bit field designator which selects the 
number of the bit affected by the operation, while ‘f’ 
represents the number of the file in which the bit is located. 
For literal and control operations, ‘k’ represents an 8- or 
9-bit constant or literal value. 

Formats shown in figure 1 define, in fact, the syntax of 
microprocessor instructions and in the same time specify 
the way of “assembly” the instruction: a random value 
(std_logic_vector) of constant, literal, or registers with 
a deterministic value of the code operation OPCODE. 

In order to obtain an optimal (i.e. minimum) height of 
syntax trees the PIC16C5x instruction set must be divided 
in 7 subsets: Gr1, … Gr7, that forms the set of terminal 
symbols of generation grammar. In the RandGen 
terminologies the terminal symbols are called lexemes. The 
lexeme’s names and decimal values are introduced in the 

lexemes list window (see figure 2), where Mask(⋅) specifies 
(by log.1) instruction bits which will be assigned by a 
random values. The set of lexemes is saved in the ROM 

entity that is an inherited component of the CR template. 

IV. CONSTRAINED-RANDOM TEMPLATE 
The RandGen-application can be viewed as a mediator 

between the test-designer and CAD-tools that facilitates 
and automates the constrained-random generator 
specifications. The rules of stochastic grammar, that will 
sequence lexemes, are introduced in the grid-window 
(Figure 3). 

In the standard grammar format the table from Figure 3 
without lexemes can be rewritten as: 

BA  → 998,0 , BA  → 002,0 , DB → , JC → , 

ED → 3,0 , FD → 2,0 , GD  → 05,0 ,  

HD → 25,0 , ID → 2,0 ,  

DE → 9/1 ,…, DE → 9/1 , 

DF →
6/1

, …, DF → 6/1 , 

DG → , DH → 7/1 , …, DH → 7/1 , 
AI → , KJ → , AK →  (3) 

It should be remarked that grammar (3) and weighed 
rules, e.g. D→ … in (3), are equivalent to the randomized 
case-statement in VHDL [1, 6] as: 

variable RV: RandomPType; 
⋅ ⋅ ⋅ 
--specifies just weight 
RandVal:=RV.DistInt((207,138,23,161,125));  
⋅ ⋅ ⋅ 
when D=> 
  case RV.RandVal(1,2,3,4,5) is  
    when 1=> Lexem< =Mask8bit; NextState<=E; 
    when 2=> Lexem<= Mask5bit; NextState<=F; 
    when 3=> Lexem<= Mask10bit;NextState<=G; 

Figure 2. Lexemes list window 

11            6   5    4             0 
OPCODE d f(FILE#) 

-- Byte-oriented file  
-- register operations 

11            8 7            5 4           0 
OPCODE b(BIT#) f(FILE#) 

-- Bit-oriented file  
-- register operations

11            8 7             0 
OPCODE k(literal) 

-- Literal and control 
-- operations  

11            9 8             0 
OPCODE k(literal) 

-- GOTO  
-- instructions  

Figure 1. PIC16C5x instructions general format
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    when 4=> Lexem<= Mask0bit; NextState<=H; 
    when 5=> Lexem<= Masl8bit; NextState<=I; 
  end case; 
when E=> ⋅ ⋅ ⋅ 

 
Distribution is introduced in weights window, shown in 

Figure 4. Moving the slider of trackers the test-designer 
performs weights definition. The weight Window also 
allows resizing the weights scale (right-top button in the 
Figure 4). 

As the rules and weights are specified it remains only to 
click the button save to generate the corresponding VHDL-
entities. An RTL-block diagram of instantiation the 
constrained random generator is shown in figure 5. The 
reset input (low level) initializes the RandGen generator 
that “operates” on rising edge of the clock signal clk. The 
output standard logic signal RndBit is a bit of the Counter 
Linear FeedBack Shift Register (LFSR), which is used as a 
random source. The low level of the Ready output 
indicates that the random code RndCode is generated. 
Simultaneously with RndCode a corresponding new Item 
and Lexeme is also generated. 

From viewpoint of formal grammar, the variable Item is 
a non-terminal symbol. The set of items are predefined in 
the RandGen tools. 

V. DESIGNING A CR–TEST BENCH 
Undoubtedly, the synthesis of a constrained-random 

generator is more sophisticated then it was presented in the 

Figure 5. Typical constrained-random generator RTL-diagram 

Figure 3. RandGen User Interface 

Figure 4. Weights specification Window 
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previous section. At first, it is needed to outline that the 
constrained-random generation is performed iteratively 
from the start item (as the item A in example) to the final 
item (as the item F) and so one: from A to A via F. 

In VHDL–language this sentence is equivalent to the 
following loop-statement: 

 
Gen: -- repeat until done 
while TestActive loop  
  case State is 
    when A => ⋅ ⋅ ⋅ Next state <= B; 

⋅ ⋅ ⋅ 
    when K => ⋅ ⋅ ⋅ Next state <= A;  
  end case; 
end loop; 
 
Secondly, the process of instruction “assembling” should 

be performed as simple as possible (more acceptable, in the 
same manner, i.e. containing same steps or operations). 
This specific peculiarity in the CR generation for synthesis 
is caused by the fact that a random value obviously can be 
“obtained” by any time of clock. One should mention that 
the probabilistic (weighted) transition is timing cost. 

A simple scheme for instruction assembly is next 
proposed. Figure 6 shows the block-diagram of one stage 
conventional hierarchical “assembler”. 

Typically, at first, the masked value of LESR is assigned 
to flip-flop DFF, when signal CTRL is logic ‘0’, and, 
secondly, if ctrl = ’1’ then lexeme’s bit is “entered” in the 
DFF where mask value was equal to ‘0’ (the designer must 
memorize this specific way of assembling the instruction!) 

Thirdly, CR generator controls exclusively the 
generation of stimuli or in other words stimuli generation is 
controlled via UUV, e.g. when a verified unit generates an 
interrupt. 

Lastly, the test-designer should implement a more 
complex generation process that is equivalent, for example, 
to a context-sensitive grammar where transitions are 
conditioned not only internally, but also by the external 
events (e.g. interrupt signals). 

A CR test bench with the stochastic non-contextual 
generation may be implemented as following: 
 
library ieee; use ieee.std_logic_1164.all; 
use work.PIC16C5_pkg.all; 
use work.RandGen_pkg.all; 
 
entity TestBench is   port (…) 
end entity; 
 

architecture TestBench of TestBench is 
begin 
⋅ ⋅ ⋅ 
end; 
 

Working folder contains the CR generator package 
PIC16C5_pkg, generated by proposed RandGen tools. 
Test-designers should only instantiate the generator and 
connect it to UUV. In the user test bench a UUV is 
instantiated by mapping the port interface, e.g. UUV: 
CR_PIC16 port map (rst=> rst, clk=> clk, Item=> Item, 
clkItem=> clkItem, Lexeme=> Lexeme, LFSR=> LFSR, 
RndBit=> RndBit, Ready=> Ready, RndCode=> 
RndCode). 

VI. TEST EXPERIMENTS AND RESULTS 
After creating the input signal waveforms we proceed to 

simulations of the PIC16C5 test bench project. The aim of 
simulations is to estimate the toggle coverage that depends 
on test length. 

Using Time End command of Quartus software we have 
scheduled the test bench simulation and recorded 
simulation coverage. Such test experiments were 
performed with different weight distributions. Figure 7 
plots the obtained results. Curve 1 is plotted for the 
generator with equiprobable transition or uniform 
distribution on grammar rules; graphic 2 is plotted for the 
test experiment with a nonunoform weights, and graphic 3 
is plotted for the test experiment with optimized weights. 
The optimization of distribution was performed applying 
the maximum entropy criteria as follows. 

Let In be the set of test sequences, e.g. instructions, test 
programs etc., generated at step n. From [7, 8] is known 
that a priori estimation of test length n of a constrained-
randomly generated stimuli depends on its probabilities pi 
as: 

{ } λ−
≥

1
1ln

min
1

ii
p

n  , (4) 

where λ is a predefined confidence level; typically λ≥ 0,95. 
From Equation (4) results that for same (unchanged) 

confidence level the test performance can be improved by 
maximizing the minimum value of n-step probabilities. 
This task can be solved in the following way. In (4) the 
distribution P(In)={pi | i∈ In} is calculated from 
Kolmogorov-Chapman matrix equation of Markov chain, 
obtained by adequately converting the corresponding 
stochastic grammar. Further, applying the dynamic 
programming (Bellman) and searching for maximization 
the entropy of finite Markov chain, the minimum 
probability at step n can be found. In our analysis the 
MatLab software was used for calculation the n-step 
distribution and solving the optimization (i.e. maximin) 
problem. So, for the count of grammar loop, equal to 2 
(depth of PIC16 stack) was found the optimal distribution 
over grammar rules, shown in (3). 

VII. CONCLUSION 
In this paper were presented tools for generation of 

VHDL-templates and “ready” entities of the constrained-

Figure 6. Block diagram of DFF with 
multiplexing input 
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random generator for synthesis. The proposed tools can be 
viewed as an intermediate stage between built-in (V)HDL 
randomization constructs and resulting logic, implemented 
in PLD.  In the paper was outlined that not only 
randomization constructs must be developed, but the 
technology of creating test benches that uses constrained-
random generator must be also developed. In this sense, the 
formal grammar and stochastic process’ fundamentals are 
helpful and well suited. 

For the future work we intend to elaborate tools for 
synthesis of state machine diagrams associated with 
generation grammar. 

Constrained-random test experiments with 
microprocessors and microcontrollers show a good 
correlation between the theoretical model and practical 
results. Thus, the test-designer is already equipped 
theoretically as well as practically for constrained random 
verification of complex logic design 
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Figure 7. Simulation coverage versus test length: 
1 – uniform weights distribution; 
2, 3 – nonuniform weights distribution. 
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