6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

Mecanismul și rolul factorului cuantic în procesul de difuzie stimulată de fotoni a Zn în GaAs și InP

Sergiu Șișianu Universitatea Tehnică a Moldovei Catedra Microelectronica și Dispozitice cu Semiconductori,

Abstract

În lucrare se propune modelul fizico-matematic în baza căruia sunt analizate și calculate dependența coeficientului de difuziune stimulată de fotoni $D(\lambda)$ a Zn în GaAs.

Datele calculate corespund celor experimentale și arată că coeficientul de difuziune stimulată de fotoni crește odată cu creșterea energiei cuantice ori cu micșorarea lungimii de undă a luminii.

Rezultatele obținute pot fi utilizate pentru optimizarea proceselor tehnologice cu tratamentul fototermic rapid de obținere a joncțiunilor p-n , inclusiv a celulelor fotovoltaice în baza semiconductorilor.

1. Întroducere.

Conform datelor experimentale, prezentate în [1], coeficientul de difuzie stimulată de fotoni RPD a Zn în GaAs și InP este de 10-100 de ori mai mare comparativ cu difuzia convențională în sobele termice. Iar mecanismul difuziei și profilurile de concentrație N(x,t) sunt complicate și nu corespund funcțiilor erfZ ori erfcZ.[2-4]. Aceste rezultate sunt explicate în baza mecanismului disociativ cu coeficientul de difuziune dependent de concentrație D(N), pe de o parte, și de concentrație D(N), pe de altă parte, de lungimea de undă a luminii $D(\lambda)$, pe de altă parte [5,6]. În literatură sunt discutate unele modele și interpretări ale rolului factorului cuantic al luminii în procesul de difuziune a impurităților în semiconductori [1,4, 7-9]. Însă nu sunt modele în baza cărora pot fi analizate efectele spectrale și dependența coeficientului de difuziune de energia cuantică și de lungimea de undă a luminii.

Scopul acestei lucrări constă în elaborarea modelului pentru calculul dependenței coeficientului de difuzie a impurităților în semiconductori în procesul tratamentului fototermic.

2. Modelul și calculul dependenței coeficientului de difuziune de lungimea de undă a luminii, $D(\lambda)$ Pentru calculul dependenței coeficientului de difuziune de lungimea de undă a luminii, $D(\lambda)$, se propune modelul cu următoarea ecuație:

$$D(T, hv) = D_0 exp - [E_D - \eta (E_{hv} - E_g)]/kT =$$

= $D_0 exp - [E_D - \eta E_{hv} (1 - E_g/E_{hv})]/kT = D_0 exp - [E_D - E^*)]/kT,$ (1)
 $E^* = \eta E_{hv} (1 - E_g/E_{hv}),$ (2)

unde D_o and E_D sunt parametrii difuziei convenționale în soba termică, E_g este energia benzii interzise a semiconductorului; k – constanta Boltzmann, T - temperatura în °K, $E_{hv} = hv = 1,24/\lambda$ – energia cuantului, λ – lungimea undei de lumină.

În ecuația (2) componenta E* este energia cuantică activă a spectrului de lumină cu valoarea cuantului mai mare de cât energia benzii interzise a semiconductorului, în cazul nostru GaAs (E_{hv} > $E_g=1,42eV, \eta\%$ - eficiența fluxului de lumină.

Calculele au fost efectuate pentru Zn în GaAs cu următorii parametri: $D_0 = 23$ cm/sec, $E_D = 2,5$ eV, $E_g = 1,42$ eV, $\eta\% = 10\%$, 20%, 30%, 40% și 50%. Rezultatele calculelor în baza ecuației (4) sunt prezentate în Tabelul 1.

	, \	/						
λ,		0,8	0,7	0,6	0,5	0,4	0,3	0,2
μm								
η%=	E*,eV,	0,13	0,35	0,55	1,06	1,86	2,71	4,68
10%,	x10							
	D(λ),	4,7x	5,8x	7,1x	1,0x	2,2x	5,9x	4,7x
	cm2 /sec	10-10	10-10	10-10	10-9	10-9	10-9	10-8
η%=	E*,eV	0.26	0,70	1,10	2,12	3,72	5,42	9,36
20%,	D(λ),	5,3x	9,8x	1,2x	3,3x	1,1x	8,8x	5,5x
	cm2 /sec	10-10	10-10	10-9	10-9	10-8	10-8	10-6
η%=	E*,eV	0,39	1,05	1,65	3,18	5,58	7,13	12,2
30%,	D(λ),	6,1x	1,2x	2,1x	9,9x	6,1x	1,3x	-
	cm2 /sec	10-10	10-9	10-9	10-9	10-8	10-6	
η%=	E*,eV	0,52	1,40	2,20	4,24	7,44	10,8	-
40%,	D(λ),	6,9x	1,7x	3,7x	2,7x	3,3x	1,8x	-
	cm2 /sec	10^{-10}	10 ⁻⁹	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁵	
η%=	E*,eV	0,65	1,75	2,75	5,30	9,3	13,5	-
50%,	D(λ),	9,9x	2,3x	6,2x	9,9x	1,6x	-	-
	cm2 /sec	10^{-10}	10 ⁻⁹	10 ⁻⁹	10 ⁻⁸	10 ⁻⁶		

Tabelul 1. Valorile coeficientului de difuzie RPD a Zn în GaAs, calculate în baza ecuatiei (.4).

Fig.1. Dependența coeficientului de difuzie RPD a Zn în GaAs de lungimea de undă a luminii, D= $f(\lambda)$ În baza datelor din Tabelul11 au fost construite graficele dependenței coeficientului de difuzie RPD a Zn în GaAs ca funcție de lungimea de undă, D= $f(\lambda)$, prezentate în fig. 1.

După cum se vede din aceste grafice, valorile coeficientului de difuziune, calculate în baza modelului propus, cresc odată cu descreșterea lungimii de undă de la λ =0,8µm până la λ =0,3 µm după cum urmează: pentru η %= 10% coeficientul D crește de la 4,7x10⁻¹⁰ cm2 /sec până la 5,9x10⁻⁹ cm2 /sec (curba 1); pentru η %= 20% coeficientul D crește de la 5,3x10⁻¹⁰ cm2 /sec până la 8,8x10⁻⁹ cm2 /sec (curba 2); pentru η %= 30% coeficientul D crește de la 6,1x10⁻¹⁰ cm2 /sec până la 1,3x10⁻⁶ cm2

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

/sec (curba 3); pentru η %= 40% coeficientul D crește de la 6,8x10⁻¹⁰ cm2 /sec până la 1,8x10⁻⁵ cm2 /sec (curba 4); pentru η %= 50% această creștere este și mai pronunțată (curba 5).

3. Dependența coeficientului de difuziune RPD a Zn în GaAs de valoarea componentei energiei cuantice a luminii, $D=f(E^*/E_D)$,

În fig.2 sunt prezentate graficele dependenții coeficientului de difuziune RPD a Zn în GaAs de valoarea componentei energiei cuantice, $D=f(E^*/E_D)$, folosind datelor din Tabelul 1...

Fig.2. Dependența coeficientului de difuziune RPD a Zn în GaAs de valoarea componentei energiei cuantice a luminii.

Din aceste date se vede că cu creșterea componentei energiei cuantice de la 10% până la 40% valoarea coeficientului de difuziune RPD crește cu câteva ordine în dependență de valorile eficienței (η %).

În experiențele noastre au fost utilizate lămpile halogene cu maximumul energiei spectrale situat în intervalul lungimii de undă de la aproximativ λ =1,0µm până la λ =0,5 µm, iar eficiența sursei de lumină a fost aproximativ de 20-35%. Pentru aceste condiții , conform datelor din fig. 17 și fig.18, putem obține mărirea coeficientului de difuziune RPD a Zn în GaAs aproximativ de 10-100 de ori, ceia ce corespunde datelor experimentale.

Concluzii

A fost elaborat modelul fizico-matematic în baza căruia sunt analizate și calculate dependențele coeficientului de difuziune cu procesarea fototermică rapidă a Zn în GaAs.

Datele calculate corespund celor experimentale și arată că coeficientul de difuziune stimulată de fotoni crește odată cu creșterea energiei cuantice ori cu micșorarea lungimii de undă a luminii.

Rezultatele obținute pot fi utilizate pentru optimizarea proceselor tehnologice cu tratamentul fototermic rapid de obținere a joncțiunilor p-n , inclusiv a celulelor fotovoltaice în baza semiconductorilor.

Bibliografia

1 .Sergiu Şişianu. Tehnologii neconvenționale în microelectronică cu tratament fotonic și difuzie stimulată. Ed. Tehnica, Chișinău – 1998

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

2. Sergiu Shishiyanu, Rajendra Singh, Teodor Shishiyanu and Kelvin Poole. Modern and low-cost Technology with Rapid Photothermal Processing for silicon solar cells fabrication. Proc. of 4th International conference Microelectronics and Computer Science, IC MECS-2005, Vol.1, 2005, Chisinau, R. Moldova

3. S. Noel, L. Ventura, A. Slaouni, J.C. Muller, B. Groh, R. Schindler, B. Froeschle and T. Theiler. Optical Effects during Rapid Thermal Diffusion. Journal of Electronic Materials, Vol.27, N₀12, 1998, 1315.

4. R. Singh, M. Fakhruddin, K.F.Poole. Rapid photothermal processing as a semiconductor manufacturing technology for the 21st century. Applied Surface 168, 2000, 198-203.

5. S. Shishiyanu. RTP diffusion and junction formation in Si and GaAs. 14st International Conference on Advanced Tharmal Proceeding of Semiconductors – RTP-2006, Japan, 2006, pp.199 -204.

6 S. Shishiyanu, T. Shishiyanu, S. Railean. Shallow p-n junctions formed in silicon used pulsed photon annealing, J. Semiconductors, Vol.36, N5, 2002, pp.581-586. Physics and Tehnic of semiconductors (rus.),

7. D. Lang, L.C. Kimmerling, "Observation of the athermal defect annealing in GaP", Appl. Phys. Lett., v.29, N5, pp. 248-250, 1976.

8. B.K. Ridley, "Quantum processing of Materials", Edit. by C.W.White, P.S.Peercy, AcademicPress-New York, pp.6-19, 1980.

9.. LencenkoV.M. Ob aktivatii smescionnoi pri relacsatii electronih vozbujdenii v tverdih telah. FTP,1969, T.3, No11, s. 799-801 (în rusa).

10. Strekalov V.N. Diffuzia v usloviah lazernogo otjiga poluprovodnicov. FTP, 1986,T.20,v.2, (în rusa).