Исследование поверхностных поляритонов ZnO в сильном

однородном магнитном поле

Венгер Е.Ф.¹, Евтушенко А.И.², Мельничук Л.Ю.², Мельничук А.В.²

¹Институт физики полупроводников имени В.Е. Лашкарёва НАН Украины, Киев, Украина, 03028, Киев 28, проспект Науки, 41

²Нежинский государственный университет имени Николая Гоголя, Украина, 16600, ул. Кропивянского, 2, г. Нежин. E-mail: mov310@mail.ru

С помощью метода нарушенного полного внутреннего отражения (НПВО) исследовано влияние сильного однородного магнитного поля на оптические и электрофизические свойства монокристалла ZnO с концентрацией свободных носителей заряда 9,3·10¹⁶ ÷ 2,0·10¹⁸ см⁻³ при ориентации $C \parallel y$, $\vec{k} \perp C$, $xy \parallel C$, $\vec{H} \perp \vec{k}$, $\vec{H} \parallel y$, $k_x = k$, $k_{y,z} = 0$. Показано, что при данной ориентации в монокристаллах ZnO существуют 3 дисперсионные ветви. Установлена возможность возбуждения «чистой» фононной дисперсионной ветви в монокристаллах окиси цинка, расположенных в магнитном поле, и определен коэффициент затухания поверхностных поляритонов (ПП). Ключевые слова: метод нарушенного полного внутреннего отражения, поверхностный поляритон.

Возбуждению поверхностных и объемных фононных и плазмон-фононных поляритонов в полубесконечных одноосных кристаллах при учете затухания и его отсутствии в литературе посвящено ряд работ [1 – 4]. Актуальным остается вопрос влияния внешних факторов на поверхность твердого тела.

В данной работе исследовано влияние сильного однородного магнитного поля на свойства поверхностных фононных и плазмонфононных поляритонов гексагонального монокристалла ZnO при ориентации $C \parallel y$, $\vec{k} \perp C$, $xy \parallel C$, $\vec{H} \perp \vec{k}$, $\vec{H} \parallel y$, $k_x = k$, $k_{y,z} = 0$

(рис. 1).

Рис. 1. Взаимное положение векторов \vec{H}, \vec{k} и координатных осей *x*, *y*, *z* в ZnO.

На рис. 2 (кривые 1, 2, 3) представлены теоретические спектры НПВО R(v)нелегированной окиси цинка ($n = 9.3 \times 10^{16} \text{ см}^{-3}$) при ориентации $C \parallel y$, $\vec{k} \perp C$, $xy \parallel C$, которые записаны при воздушном зазоре между исследуемым образцом и призмой НПВО d = 14,6(1, 1'); 8,7 (2, 2'); 4,1 (3, 3') мкм и углах 30° (1, 1'), 35° (2, 2'), 50° (3, 3'). Расчет проведен при отсутствии влияния на монокристалл магнитного поля (1 - 3) и при действии последнего величиной 100 кЭ (1'-3') при ориентации $\vec{H} \perp \vec{k}$, $\vec{H} \parallel v$. Точки – экспериментальные данные для образца ZnO ($n = 9.3 \times 10^{16} \text{ cm}^{-3}$), зарегистрированные по методике [3]. Величина *d* варьировалась до установления интенсивности поглощенной волны не превышающей 20 % при неизменной частоте минимума в спектре НПВО [4].

Рис. 2. Спектры НПВО ZnO ($n = 9,3 \ge 10^{16} \text{ см}^{-3}$) при С||y, $\vec{k} \perp C$, $xy \parallel C$, $\vec{H} \perp \vec{k}$, $\vec{H} \parallel y$, $k_x = k$, $k_{y,z} = 0 \ge 1 - 3 - H = 0$ кЭ; 1' - 3' - H =100 кЭ. Линия – расчет; точки – эксперимент.

Рис. 3. Спектры НПВО ZnO $(n = 9,3 \times 10^{16} \text{ см}^{-3})$ при С||y, $\vec{k} \perp C$, $xy \parallel C$, $\vec{H} \perp \vec{k}$, $\vec{H} \parallel y$, $k_x = k$, $k_{y,z} = 0: 1 - H = 0$ кЭ, 2 - H = 30 кЭ, 3 - H= 65 кЭ, 4 - H = 100 кЭ. Линия – расчет; точки – эксперимент.

Минимумы экспериментальных и расчетных спектров соответствуют частотам $v_{\text{мін}} = 518$ (1), 537 (2), 551 (3) см⁻¹ без влияния на образец магнитного поля, при $H = 100 \text{ кЗ} - v_{\text{мін}} = 518$ (1'), 538 (2'), 552 (3') см⁻¹. Полуширина спектров соответственно составляет $\Gamma_{\mu} = 2, 3, 9 \text{ см}^{-1}$.

На рис. 3 показаны спектры НПВО для нелегированной окиси цинка с концентрацией свободных носителей заряда $n = 9,3 \times 10^{16}$ см⁻³ и угле падения ИК-излучения в призме НПВО 50°. Толщина зазора между призмой и монокристаллом составляла 4 мкм. Сканирование проводилось по величине магнитного поля соответственно 0 (1), 30 (2), 65 (3) и 100 (4) кЭ. Минимум спектров соответствует частоте $v_{\text{мін}} = (551 \pm 1)$ см⁻¹ для всех значений магнитного поля.

Как видно из рис. 3, магнитное поле влияет на интенсивность коэффициента поглощения в области минимума спектра НПВО и не изменяет частоту последнего в пределах погрешности эксперимента. Аналогичные исследования проведены для легированных ZnO с концентрацией свободных носителей заряда 6,6 х 10^{17} см⁻³ и 2,0 х 10^{18} см⁻³. Обнаружено, что при увеличении степени легирования окиси цинка влияние магнитного поля на характер спектра НПВО становится существеннее.

На рис. 4 показаны дисперсионные кривые слабо легированного монокристалла ZnO (n = 6.6 $x \ 10^{17} \text{ см}^{-3}$) при наличии действия на кристалл однородного магнитного поля величиной от 0 Э до 100 кЭ при ориентации $\vec{H} \perp \vec{k}$. Из рис. 4 (вставка) видно. что высокочастотная дисперсионная кривая практически не изменяется при сканировании магнитного поля от 0 до 100 кЭ, тогда как нижняя дисперсионная ветвь с ростом величины магнитного поля смещается в область меньших частот. Кроме того, наличие действия магнитного поля на монокристалл ZnO в области частот от 190 до 350 см⁻¹ приводит к появлению еще одной дисперсионной ветви, ограниченной значением волнового вектора. При росте величины внешнего магнитного поля указанная ветвь смещается в область высоких частот. Это обусловлено тем, что при увеличении величины магнитного поля циклотронная частота смещаются в высокочастотную область, при этом расщепляется связь между плазмонами фононами и появляется «чистая» фононная дисперсионная ветвь [5]. Аналогичным является влияние магнитного поля на дисперсионные нелегированного зависимости И сильно легированного монокристаллов ZnO. Рассчитаны предельные частоты верхней и нижней ветви дисперсионной кривой, а также предельная частота «чистой» фононной ветви (табл. 1).

Таблица 1.Предельные значения частот v^{\pm} и частоты дополнительной дисперсионной ветви монокристалла ZnO, помещенного в магнитном поле

Н, Э	1		$30 \cdot 10^{3}$			$65 \cdot 10^3$			$100 \cdot 10^{3}$		
<i>n</i> , cm ⁻³	ν ⁻ , см ⁻¹	ν ⁺ , cm ⁻¹	ν ⁻ , см ⁻¹	<i>V_f</i> , см ⁻¹	ν ⁺ , cm ⁻¹	ν ⁻ , см ⁻¹	<i>v_f</i> , см ⁻¹	ν ⁺ , cm ⁻¹	ν ⁻ , см ⁻¹	<i>v_f</i> , см ⁻¹	ν ⁺ , cm ⁻¹
9,3 x 10 ¹⁶	59	561	34	108	561	21	171	561	14	242	561
6,6 x 10 ¹⁷	152	578	124	201	576	98	245	575	80	293	574
$2,0 \times 10^{18}$	246	627	221	287	620	196	316	612	174	345	607

На рис. 5 показаны расчетные дисперсионные кривые ZnO с тремя разными концентрациями свободных носителей зарядов $(1 - 9,3 \times 10^{16} \text{ см}^{-3}; 2 - 6,6 \times 10^{17} \text{ см}^{-3}; 3 - 2,0 \times 10^{18} \text{ см}^{-3})$ при учете

действия на монокристалл магнитного поля величиной 100 кЭ. Как видно, с ростом концентрации свободных носителей заряда и под действием магнитного поля при ориентации смещаются в область высоких частот.

Рис. 4. Дисперсионные зависимости монокристалла ZnO ($n = 6,6 \ge 10^{17} \text{ см}^{-3}$) при ориентации $C||y, \vec{k} \perp C, xy || C, \vec{H} \perp \vec{k}, \vec{H} || y, k_x = k, k_{y,z} = 0 \text{ в}$ магнитном поле величиной: 1 - 0 Э; 2 - 30 кЭ; 3 - 65 кЭ; 4 - 100 кЭ.

Рис. 5. Высоко- и низкочастотная дисперсионные ветви ZnO при ориентации $C||y, \vec{k} \perp C, xy|| C, \vec{H} \perp \vec{k}, \vec{H} \parallel y, k_x = k, k_{y,z} = 0$ под действием магнитного поля величиной 100 кЭ: 1 – 9,3 х 10¹⁶ см⁻³; 2 - 6,6 х 10¹⁷ см⁻³; 3 - 2,0 х 10¹⁸ см⁻³.

На рис. 4, 5 представлены расчетные дисперсионные зависимости при учете анизотропии фононной и плазменной подсистем и отсутствии затухания в них. С учетом затухания для магнитоплазмонов и для поверхностных плазмон-фононных мод в магнитном поле (поворот) зарегестрирован загиб назад в расчетных дисперсионных кривых ZnO при данных условиях.

На рис. 6 дана зависимость коэффициента затухания ПП от частоты $\Gamma_{\Pi\Pi}(\nu)$ для монокристалла ZnO. Кривые 1 – 3 рассчитаны по $C \parallel y$ і $\vec{H} \perp \vec{k}$ все три дисперсионные ветви формуле [3] для монокристаллов окиси цинка с разной степенью легирования $(1 - 9, 3 \times 10^{16} \text{ см}^{-3}; 2 - 6, 6 \times 10^{17} \text{ см}^{-3}; 3 - 2, 0 \times 10^{18} \text{ см}^{-3})$ и отсутствии действия на кристалл магнитного поля. Кривые 1' - 3' - для сильно легированного образца ZnO $(2, 0 \times 10^{18} \text{ см}^{-3})$ при ориентации $C \parallel y$, $\vec{k} \perp C$, $xy \parallel C$ в случае действия магнитного поля на монокристалл в направлении $\vec{H} \perp \vec{k}$, $\vec{H} \parallel y$ и величиной 30 (1'), 65 (2'), 100 (3') кЭ.

Рис. 6. Зависимость коэффициента затухания поверхностных поляритонов от частоты $\Gamma_{\Pi\Pi}(v)$ для монокристалла ZnO: 1 – 9,3 x 10¹⁶ см⁻³; 2 - 6,6 x 10¹⁷ см⁻³; 3, 1' – 3' - 2,0 x 10¹⁸ см⁻³; 1 – 3 - H = 0 Э, 1' – 3' - H = 30, 65, 100 кЭ.

работе [6] графическим В способом определен коэффициент затухания ПП. На рис. 7 показана методика определения коэффициента затухания ПП Г_{ПП} для оптически-анизотропных монокристаллов ZnO. Кривая 1 – дисперсионная ветвь, а штриховые 2, 3 определяют полуширину Г_п в спектре НПВО. «Истинная» ширина спектров, согласно [6], равняется коэффициенту затухания ПП и определяется разницей частот, расположенных на пересечении перпендикулярной прямой к оси абсцисс в системе штриховые кривые – дисперсионная точка. Рассчитанные таким методом значения Г_п даны в табл. 2.

Рис. 7. Дисперсионная зависимость ZnO. Γ_п и Γ_{IIII} – полуширина и коэффициент затухания ПП.

Как видно с табл. 2, при увеличении угла падения и росте концентрации свободных носителей заряда в монокристаллах ZnO коэффициент затухания ПП растет. Аналогичным является влияние плазмон-фононного затухания и внешнего магнитного поля на Г_п и Г_{пп} ZnO.

Таблица 2. Полуширина минимумов в спектре НПВО (Γ_n) и коэффициент затухания ПП (Γ_m) ZnO при $\gamma_p \neq 0, \ \gamma_f \neq 0$ и $H = 0, \ H = 100 \ \kappa \Im$

		<i>H</i> =	0 кЭ		<i>H</i> = 100 кЭ							
φ,°	ν _{min} , см ⁻	χ	Г _п , см ⁻¹	Γ _{пп} , см ⁻¹	ν _{min} , cm ⁻¹	χ	Г _п , см ⁻¹	Г _{пп} , см ⁻¹				
ZO1-3 ($\gamma_{p\perp} = 280, \gamma_{p\parallel} = 260, \gamma_{f\perp,\parallel} = 13$)												
30	527	1,67	23,73	17,11	528	1,7	35,69	27,52				
35	550	2,06	132,29	111,68	551	2,17	270,52	216,5				
50	563	2,7			564							
ZO2-3 ($\gamma_{p\perp} = 150, \ \gamma_{p\parallel} = 170, \ \gamma_{f\perp,\parallel} = 11$)												
30	518	1,63	10,59	7,04	518	1,632	11,13	7,12				
35	537	1,945	24,93	21,86	538	1,985	35,22	31,23				
50	551	2,63	209,67	197,41	552	2,805	353,45	328,61				
ZO6-B ($\gamma_{p\perp} = 406, \gamma_{p\parallel} = 350, \gamma_{f\perp,\parallel} = 21$)												
30	555	1,86		197,25	557	1,94		410,19				
35	576	2,26			574	2,38	741,25	720,1				
50	585				582	2,85	872,47	853,34				

5. Выводы

Таким образом, действие сильного однородного магнитного поля на монокристалл ZnO при ориентации $C \parallel y$, $k \perp C$, $xy \parallel C$, $\vec{H} \mid \vec{k}$ сопровождается изменениями коэффициента поглощения в спектрах НПВО, а частоты минимума именно изменением И интенсивности. Впервые показано, что в оптически-анизотропных монокристаллах ZnO возбуждение «чистой» фононной возможно дисперсионной ветви, которая с ростом величины магнитного внешнего поля смещается в высокочастотную область спектра. Начальная частота И характер «чистой» фононной дисперсионной ветви зависит от концентрации носителей свободных заряда И величины магнитного поля. При действии магнитного поля оптически-анизотропный монокристалл на нижняя дисперсионная ветвь деформируется. В же время высокочастотная ветвь то

дисперсионной кривой в пределах погрешности эксперимента остается неизменной. Что касается коэффициента затухания ПП ZnO, то этот вопрос нуждается в дополнительных исследованиях, однако неопровержимым является влияние внешнего магнитного поля.

Литература

[1] Санников Д.Г., Жирнов С.В., Семенцов Д.И., "Магнитные поляритоны на границе сверхпроводника и ферромагнетика", ФТТ, т. 57, вып. 9, с. 1824 – 1828, 2009.

[2] Альшиц В.И., Любимов В.Н., "Бездисперсионные поверхностные поляритоны на различных срезах оптически одноосных кристаллов", ФТТ, т. 44, вып. 2, с. 371 – 374, 2002.

[3] Венгер Є.Ф., Мельничук О.В., Пасічник Ю.А., "Спектроскопія залишкових променів", К.: Наука, 192 с, 2001. [4] Дмитрук Н.Л., Литовченко В.Г., Стрижевский В.Л., "Поверхностные поляритоны в полупроводниках и диэлектриках", К.: Наук. думка, 375 с, 1989.
[5] "Поверхностные поляритоны. Электромагнитные волны на поверхностях и

границах раздела сред", под ред В.М. Агроновича, Д.Л. Миллса, М.: Наука, 528 с, 1985. [6] Решина И.И., Мирлин Д.Н., Банщиков А.Г., "Определение параметров ангармонизма и оптических постоянных кристаллов по спектрам поверхностных поляритонов", ФТТ, т.15, вып. 2, с. 506 – 51, 1976.