# Natural Ferromagnetic Resonance in Microwires 

Serghei BARANOV<br>Institute of Applied Physics of Moldova<br>baranov@phys.asm.md


#### Abstract

The investigation of ferromagnetic metal microware with an amorphous core structure by ferromagnetic-resonance method is reviewed. This method can be used in investigation the residual stress and the micro- and macroscopic heterogeneity of amorphous materials. The theoretical basis of the method in this case is considered. Index Terms - ferromagnetic-resonance method, cast amorphous glass-coated microwires, residual stress.


## 1. INTRADUCTION

A microwire was considered as ferromagnetic cylinder with small radius $r_{m}$. For its characterization we introduce following parameters:

1. The depth of the skin layer is:

$$
\delta=\left[4 \pi\left(\mu \mu_{0}\right)_{e} \Sigma \omega\right]^{-1 / 2}=\delta_{0}(\mu)_{e}^{-1 / 2},
$$

$\left(\mu \mu_{0}\right)_{e}$ - is the effective magnetic permeability, and $\Sigma$ - is the microwire electrical conductivity. In the case of our magnetic microwires, with the relative permeability $|\mu|$ near resonance of the order $10^{2}$, $(\omega \sim(8-10) \mathrm{GHz}) \delta$ changes from 1 up to $3 \mu \mathrm{~m}$. 2. The size of the domain wall (according to Landau-Lifshits theory) is:
$\Delta=\pi(A / K)^{1 / 2} \sim 10-0,1 \mu \mathrm{~m}$,
where $A$ is the exchange constant and $K$ is the energy anisotropy of microwire.
3. Radius of single domain (according to Brown theory) is:
$a=\left(1,84 / M_{s}\right)(A / 2 \pi)^{1 / 2} \sim 0,1-0,01 \mu \mathrm{~m}$,
where $M_{s}$ is the saturation magnetization of microwire.
According to the frequency of the NFMR is:

$$
\left(\frac{\omega}{\gamma}\right)^{2}=\left(H_{e}+2 \pi M_{s}\right)^{2}-\left(2 \pi M_{s}\right)^{2} \exp \left\{-2 \delta / r_{m}\right\}
$$

where $\gamma$ is the gyromagnetic ratio $(\gamma \sim 2,8$ $\mathrm{MHz} / O e$ ) . The anisotropy field is $H_{e} \sim 3 \lambda \sigma / M_{s}$, where $\lambda$ is the magnetostriction constant; and $\sigma$ is
the effective residual stress originated from the fabrication procedure

## 2. CONCLUSION

For the frequency of NFMR in simple approximation formula can be written as:

$$
\begin{equation*}
\omega(G H z) \approx \omega_{o}\left(\frac{0.4 x}{0.4 x+1}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

$x$ is ratio of the glass - metal cross-sectional area,

$$
\omega_{o(G H z)} \approx 1,5\left(10^{6} \lambda\right)^{1 / 2}
$$



Fig.. Theoretical curve (continuous curve) of FMR frequency as a function of x according to Eq. (1), for zero external field and experimental data for dependence of FMR frequency on parameter x (crosses)

