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Abstract. In this paper we present the rewriting timed hybrid Petri nets (RTHPNs) enhanched with
positive and negative place capacity, guard functions for transitions and rewriting rules, marking-
dependent cardinality reversible arcs and anti-tokens. The RTHPN model allows its structure and/or
attributes to change at run-time depending on its current state and/or the occurrence of some events.
Also, we describe an approach to simulation and formal verification behaviour properties of spiking
neural membrane computing (SNMC) models using particular RTHPNs that is supported by upgraded
VPNP Tool. The use of RTHPNs in simulation and analysis of an extended SNMC model is illustrated
through examples proving that such approach preserves faithfully its behaviours.

Keywords: analysis, anti-token, spiking neural membrane computing, model, rewriting rules,
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Rezumat: In lucrare prezentam retelele Petri hibride temporizate cu rescriere (RTHPNs) care
sunt imbunatdtite cu capacitati pozitive si negative ale locatiilor, functii de garda ale
tranzitiilor si cele ale regulilor de rescriere, cu arce reversibile de cardinalitate marcaj -
dependente si anti-tokene. Modelul RTHPN permite ca structura si/sau atributele sale sa se
schimbe in timpul rularii in functie de starea curenta si/sau de aparitia unor evenimente.
Descriem si o abordare de simulare si verificare formala a proprietdtilor comportamentale ale
modelelor de calcul membranal neuronal spiking (SNMC) folosind RTHPNs particulare, care
sunt sustinute de VPNP Tool actualizat. Folosirea RTHPN fn simularea si analiza unui model
SNMC extins este ilustrata in baza unui exemplu care demonstreaza ca o astfel de abordare
pastreaza fidel comportamentele acestuia.

Cuvinte-cheie: analizd, anti-token, calcul membranal neuronal spiking, model, requli de rescriere,
retele Petri hibride temporizate, simulare si verificare.

1. Introduction

Spiking neural P systems (SNPS) belong to the third generation of neuronal models.
They were proposed and studied in [1] as a class of distributed and parallel computing models
that include the idea of spiking neurons into P systems [2, 3].
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Next, due to the space restrictions, we will give a summary overview to this topic and
refer the reader to papers [4 - 9] and the references therein. We only note that in recent years
several variants of SNPS, with Turing computable sets of natural numbers, have been
proposed by combining methods and ideas from the fields of biological activities,
mathematics and computer science, accumulating rich results in their theoretical research
with various applications [6, 7]. SNPS have a well defined network-distributed structure, a
powerful parallel computing ability, dynamic characteristics and non-determinism. These
characteristics of SNPS allow them to be applied in solving many practical problems [6].

Although great progress has been made in the field of theoretical definition of the
application of different SNPS kinds in recent years they still have some shortcomings in
distributed data processing, but they can be improved. Thus, traditional SNPS only processes
integer numbers of spikes as symbolic data, so it is exceedingly difficult to process a large
amount of numerical information with real values.

In [10] a new extension of SNPS is proposed, called spiking neural membrane computing
(SNMC) models that improve on current SNPS variants by enabling real data processing
technology. The SNMC model contains the input data unit, the threshold unit and evolution
rules with a nonlinear time delay production function that are real or integer values. Synapse
weights connecting neurons in SNMC models can have positive or negative values, and they
transmit spikes or anti - spikes. Also, the Turing universality of the SNMC model is proved.
Since the SNMC model can extend the application when information has integer and/or real
values and this approach has great possibilities to solve some practical problems, for
exemple, that are mentioned in [7, 8, 10].

In SNPS and SNM(, the firing rules are selected non-deterministically, so that any
applicable firing rule is selected with equal probability. However this assumption is quite
unnatural in what consists their application in different conditions. For this purpose, by
introducing probabilities of selection of evolution rules in neurons, we propose an extension
of the SNMS model, called ESNMS, similar to the formal framework proposed for SNPS [11]
by using stochastic features.

Any developer of P systems and SNPS models and computing applications, knows that
the most important quality of a computing application is that it is functionally correct, i.e.
that it exhibits certain behavioral or qualitative properties [7, 8]. Once assured that the system
behaves correctly, it is also important to ensure that the system meets also certain
performance-related (or quantitative) objectives. Therefore, it is necessary that through well-
constructed SNPS, SNMC or ESNMC models of the developed computational applications, the
behavioral properties can be checked and thus possible errors that may appear in the earlier
phases of the system development can be detected and corrected, since such an approach
allows the modeler to fix them easily and cheaply.

Various aspects of the representations and qualitative characteristics of P and SNPS
systems have been extensively studied. However, the tools that support simulation and
behavior properties verification of real aplications using such models are relatively limited
[12-14]. Most of the known SNPS simulators are mainly text-based that have little or no
visualization of the models and their calculations. Several authors have proposed some
approaches to simulate different variants of P systems [15-18] through appropriate Petri net
(PN) extensions to remedy the mentioned disadvantages and analyze some behavioral
properties of these models. PNs model is a graphical and mathematical modeling tool which
is used to specify, in clear manner, the behaviors of concurrent systems. Moreover, due to the
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similarity of the graphical structure, the translations of SNPS into models of PNs and analysis
of their behavior features, are carried out in [18]. For example, in [18] a variant of SNPS with
spikes and anti-spikes are studied. It describes a method to represent and simulate SNPS with
anti-spikes using PNs. With a well-constructed PN model of the elaborated SNPS or SNMC,
faults in the system can be detected and fixed at earlier stages of development. PN simulation
is a suitable and simple but effective approach for the modeller to verify the desired
behavioral properties of discrete event systems. A list of PN simulation tools along with
feature descriptions can be found on the Petri Nets Tools Database website [19].

However, to the best of our knowledge, with these tools we cannot visually simulate
and analyze the behavioral properties of SNMC models using real data and stochastic
application of evolution rules. Moreover, with the already known extensions of timed hybrid
PN (THPN) [20] or fluid stochastic PN (FSPN) [21] it is very difficult to map SNMC models and
analyze them, because in THPN places with negative-positive capacities and negative
marking - dependent cardinality are not allowed. Also, it is easy to confirm from experience
that the developed THPN or FSPN models, which adequately describe the behavior of real
systems, are often difficult to use in practice due to the problem of the rapid increase in their
graphic size. Thus, with a steady increase in complexity and size of SNMC, their models also
become larger and less comprehen-sible. Introducing modularity concepts into system
specifications is a wide range of research because it makes large descriptions handling easier.

The challenging development of large SNMC applications can be eased through the
usage of appropriate models to simulate, evaluate and validate them before hand. One well
known method for this is the deployment of hierarchical PNs (THiPN) that provide a more
abstract view. Also, especially challenging is the development of large SNMC models with
dynamic components [8] that allow dynamic structural adaptation. To overcome this problem,
it is necessary to improve the THPN formalism that compactly and flexibly describe extended
SNMC models with the probabilistic selection of evolution rules (ESNMC, for short).

Practical methodologies in engineering and computer science take a structural
approach, designing systems from smaller subsystems and components, which can be
combined and reused. In this context, for efficient formalization and to deal with the
implementation and formal correctness analysis of SNMC and ESNMC models, in this paper
we define a new extension of THPN, called rewriting THPN with anti-tokens (in short, RTHPN)
having guards for transitions and rewriting rules. This approach allows to build modular and
hierarchical models, capable of describing cases in which the structure of the model and its
attributes can run-time change depending on its current state and/or the occurrence of some
events. The RTHPN is the improved and extended version of the rewriting GSPN that are
enriched with reconfigurability [22, 23].

As far as we know, there is no work in the literature that treats the visual simulation
and anaysis of ESNMC models using dynamic run-time reconfiguration of RTHPN models. In
this paper, we describe an approach that we believe is suitable in terms of both
expressiveness and analysis capabilities of ESNMC models using RTHPNs. The proposed
RTHPN models are based on the maximality step firing semantics [16].

Also, we present a methodology that maps SNMC and ESNMC models similarly into
RTHPN representations, which allows visual simulation and the study of the behavioural
properties of such models dynamics via the upgraded VPNP Tool [24] in an easy-to-use
manner. The practical motivation is to propose a novel way to deal with the analysis
complexity in some real-world applications under the framework of SNMC and ESNMC
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models. In this context, a numerical example is presented and studied to demonstrate the
applicability and utility of the proposed RTHPN approach for simulation and analysis of
ESNMC models. For this purposes the flat THPN (with anti-tokens) nets representation of the
hierarchical RTHPN net can be used.

The paper is organized as follows. In Section 2 we describe the definition, spike
evolution rules and behavior of ESNPC models. Also, in Section 3 we introduce the dynamic
RTHPN with anti-tokens that allow the run-time reconfiguration of the analyzed ESNPC
models. Section 4 provides the simulation and analysis metodology of ESNMC models using
RTHPN nets. The conclusions of this work and future research efforts are described in Section 6.

2. Extended Spiking Neural Membrane Computing Models

In this section, based on SNMC model that is proposed in [10], an extended SNMC
model, called ESNMC model, is presented. The definition and behavior of ESNMC models are
given below. Neurons contain extended evolution rules with stochastic application with
integer and/or real input value and a threshold value. The transmission of data (spikes or anti-
spikes) by neurons is carried out by timed firing rules and their respective synaptic
connections.

It is assumed that the readers are familiar with formal language theory and the basics
of Membrane Computing (a good introduction is [2] with recent results and information in
the P systems webpage [3]).

Definition 1. From [10] an ESNMC model of degreem>1, denotedGII, is a construct
expressed by a 6-tuple, GIT = (O, =, W, Syn, in, out), where:

(1) O ={a, a} is the binary alphabet, that ais called spike and a is called anti-spike
included in neurons.

(2) £={o,, 0,,:,0,}is the set of neurons, of the form o, = (u;, b,, pf,, R,), where: (i)
U; € R isiinput data ino;; (i) by € R, is a threshold of o; ; (¢) pf;is the production function that
compute the total data value of o,. The total value is the weighted sum of all inputs of o,
minus the threshold; (i) R; ={r,, } is a finite set of evolution rules of o;, with the form
Lo (0, )E/a" @™ satg, 7, s,e{0,1}, where: g, is the application probability of
evolution rule with (Zw, q;,, ) =1; Eis aregular expression overa or @;and ¢ =0 for integer
values or 0<¢<0.5 for real values of pf;.The 7;, and 7j, after the rule refers to time
delay. The 7;, represent the time that neuron o, receive spikes from theo, | #1i, and ],

represents the rule execution time (from the execution of the production steps to the
outputting step). If rule I, , is chosen non-deterministically, then it is not mentioned.

(3) W ={w, ;,i# ]} is the weight on the synapse, which can be positive or negative. A
positive weight generate spikes, and a negative weight generate anti-spikes.

(4) Sync{L, 2,---,m}x{L, 2,---,m}xW is the set of synapses.

(5) in and out are the input neuron and the output neuron, respectively. The input
neuron converts the input data into spikes containing integer values or real values. The
output neuron outputs the input data as a binary string composed of O spikes and 1 spikes.

A GII is pictorially described as a directed graph without self-loop, where the nodes
of graph are represented by neurons, and the arcs indicate the synapses among the neurons,
as shown in Figure 1. It also indicates the relationship between neurons. The set of arcs
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(synapses) entering in the neuron o, is denoted as‘c; and those that come out of o; are

denoted aso; .

[d", a']

Figure 1. The neuronal structure of a neuron o, of GIl model (Adapted from [10]).

Next, we explain the behavior of SNMC model. If threshold is O, this means no
threshold in neurons. The input data U; of a neuron o; is the original data ¢, plus linking input
datazwl (s -w,;), namelyu; = ¢, +Z\wl (s,-w,;). The linking input data comes from the
connected neurons, and the original data are that the o, itself already exists. For example,
the real value 2.5 is shown as a*° that represent as 2.5 spikes in a o, and a >° denot 2.5
spikes with a negative charge in the neuron, i.e. 2.5a. In eacho;, an anti-spike can

immediately annihilate one spike.
The GIT model is synchronized by a global clock and works in a locally sequential at
the level of each neuron and globally in maximal manner at whole GII model. In eacho,, at

firing step, if there is more than one rule enabled, then only one of them (chosen non-

deterministically) can fire. At each step, the neurons of GII evolves in parallel and in a

synchronising way, as all the neurons chooses an enabled rule and all of them fire at once.
The rulesR; ={r,, } are processed as given below. So, the rule r,, contains two parts,

including the production function, denoted pf,, and the outputting ofs;,. The pf.is used to
calculate pf, =u, b, which will cause the state change of neuron g;. In addition, the neuron

has a critical value, which is set to ¢. Therefore, the execution steps of rules are divided into
three steps: [10].
(1) Production step. When neuron o, receives weighted spikes s, with data value

ng (s, -w, ;) from connected ¢, €0, neurons witho; at timez;, , that represents the firing
rule timez;, . Ino; is calculate the pf; =u;, —b,, where the u; = ¢, +Z\m (s-wW,;), & is the
original data andlyis the unchanged threshold value. Before a delay of t;, times, theo;isin a

closed state.
(2) Comparison step. The result pf, =u, —b.is compared with the critical value ¢,

denoted (U, —b;) |, . It determines whether the output s, of o, in the next step is 1 or 0.

(3) Outputting step. If pf, > ¢ thens, =1 and the rule I, can be applied to output a
spike with the value of 1. If it has pf,<e, then s =0and the rule
(qi'kr)E/apf(“i’bi b 1 Tiy» Tiy fires. Therefore, no spike can be sent byo; to the
connected neurons with oy . If I, , fire, the value unit u; in o;is consumed (i. e. it is reset to 0)
and thebis unchanged. The firing of r,, requires the following conditions: (1) Assume the

number of spikes contained in neurono, is y, and a” belongs to the language set
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represented by the regular expression E, and the current number of y in o;is greater than
or equal to the number of spikes consumed, u;, i.e., ¥ 2 Uu,. (2) The o, can only be activated

when it receives the signal sent by the connected neurons‘o;, .

We mention that it can be shown that SNP systems are a particular case of the GII.

As already shown, the neurons in an GII fire in parallel, that each neuron uses only
one rule in each time unitz. The current number of spikes (anti-spikes) present in each neuron
of GIT at that time is represented by the configuration, denoted ascC, (z) = (u,(z), u,(z), ...,u, (z))-

The initial configuration is denoted as C,(0) = (u,(0), u,(0), ...,u, (0)) . Currentc,(r) is changed
by the locally sequential and globally maximal application of enabled rules. Such a step is
called transition. The transition from C, () at time r to the other C;(r +1) configuration at
time 7+1 is denoted ascC, (r)[4. > C,|(r+1), Where g <R is a set of executed enabled rules at
time stepr. When the calculation reaches a certain configuration and there is no rule that
can be activated, then the calculation stops, and this halting configuration is denoted as
C,(zy). The computational process of the GIT can be regarded as a transition of a series of
configurations, which is ordered and finite, i.e., from the initial configuration c toc, (¢).
Example of analysis of aGIl model. Next, for the reader to better understand this
approach, we will illustrate some definitions and behavior of GII models with an ESNMC
modelGIIl represented in Figure 2 that is modified from [10]. The GII1 has 5 neurons, denoted
byo,, o,, 05, o, and o, that being the output one. The neurons are represented by nodes

of a directed graph whose arcs represent the synapses; an arc also exits from the output
neuron, pointing to the environment. In each neuron o; are specified the rulesR;, the

threshold b, and the u; spikes present in the initial configurationc,(0).

T
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Figure 2. An ESNMC model GII1(Adapted from [10]).

The GI11 model works as follows. &, contains a real input value u, = 2.5 spikes and a
threshold valueb, =1.1, and it exists in the neuron in the form[a®*®, a'']. Let ¢ =0.1and time
steps are denoted by 7, =k,k>0 units of time. At timer,, neuron o, fires so
pf, =(2.5-1.1) =1.4> ¢,and aspike s, =1 is generated attime r,. Thus, o, and o, respecti-
vely receives together 1.4 spikes and 2.3 spikes fromo;. At timez,, o, generates s; =1
because pf, > £. Since, o, contains two rules, of which one is selected for execution non -
deterministically. Therefore, two cases can occur depending on the choice of rule ino,:

J If ther,,is used, o, receives a 1.4 spike from o, at timer,, and at timez, we
get pf,, =(1.4-2.1)<¢. So, at timez,, o, generates, =0. At the same time, o, receives 1

spike from o, and the r,, is used. Since it's pf,, <&, and o, does not send a spike to &,. So
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the o, has produces empty spikes at timez., and o, receives 2.1 spikes from o,. At time 7,
,itsrulein oy firesand pf, =(2.1-1) > ¢, so it produces S; =1, and sends it out at the same time.

o If the ,, is used then o, is in the closed state before timez; and does not
receive any spikes. At timez,, the pf, > ¢ produces spikes to send to neurons &, andos.
Thus, at timer,, o, receives 2.4 spikes: 1.4 from o, and 1 fromo,. At timer,, ino, we get
pf, =(24-21)>¢, it hass, =1, and o, produces s, =1 and sends it to o, then receives
3.1 spikes, and at time z; its pf, = (3.1-2.1) > ¢, sos, =1. Hereupon, o, receives 2.1 spikes
from o,and 1.3 anti - spikes fromo,, so o contains u, =(2.1-1.3) =0.8 spikes. In this way,
at timez, s, =1and no sent out because pf, =(0.8-1.2)<¢.

The behaviour of the GII1 model can be analyzed based on a transition labelled
directed graph of reachable configurations C,(z,)=(u,(z,), U,(z,), ....us(u,(z,)) from the initial

configurationC, that display the changes of spikes (anti - spikes) numbers u,(z,) ino; at
each time step 7, by application of activated and executed set rules J, in firing step.

Next, to deal with the visual simulation and formal correctness verification of ESNMC
modelsGII, we introduce a new extension of THPN, called Rewriting THPN (RTHPN), with
negative place capacity; marking-dependent cardinality reversible arcs and the ability to
dynamically in run-time reconfigure its structure and/or attributes.

3. Rewriting Timed Hybrid Petri Net with Anti-tokens

The definition of a RTHPN is derived according to [23, 25, 26] and inherits most of the
HTPN [21], FSPN [22] and GSPN [23] characteristics. We assume that the readers are familiar
with the basic concepts of these types of PN extensions. A more detailed theoretical
description of these topics is beyond the scope of this article.

As already mentioned, this enhancement allows the compact modeling of high
complexity SNPS and ESNMC models through RTHPN, without the risk of having a very
complicated graphical size HTPN model, too difficult to represent and to understand.

Let 1z and IR be the sets of discrete and real numbers, respectively.

Definition 2. A Rewriting Timed Hybrid Petri Net (in short, RTHPN), denoted RHT", is a
16-tuple RHI =<P, E, Pre, Post, Test, Inh, Ky, Ky, Pri, G5, G, T, @, V, M, Lib >, where:

« Pis the finite set of places partitioned into a setP, ={p,,---, p, }, n, =| P, | of discrete
places and a setP, ={b,---,b, }, n, =P |of continuous places (buffers), wherep=p, UP,,
P, P, =@ . The discrete places may contain a natural number of tokens, while the marking

of a continuous place is a real number (fluid level). In the graphical representation, a
discrete place is drawn as a single circle while a continuous place is drawn with two
concentric circles;

« E=T Up is afinite set of events, Tmp=, PNE =, where T is a finite set

of transitions and p is a finite set of discrete rewriting rules about the run-time structural and
attributes change of RHI'. The set E is partitioned into E =E, U E,’ E,NE, =@ so that:
E, isasetoftimed eventsand E, is a set of immediate events. Likewise, E can be partitioned
into a set E, ={e,,---,e, },k, =/ E, | of discrete events and aset E, =T, ={u,,---,u}, k, =|E,| of

continuous transitions, where T =T, UT_, T, " T, = . A transition t; €T, is drawn as a black
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bar; a continuous transition u, T,is drawn as an empty rectangle and rewriting rule I, € p
is drawn as two embedded empty rectangles.

e Pre, Test and Inh:PxT —Bag(P) respectively, are forward flow, test and inhibition
functions with marking-dependent cardinality. Pre is the forward incidence function, Test is
the promoter function and /nh is the inhibition function of transitions. Bag(P) are discrete or
real-valued multisets functions over P [20-22]. The backward flow function in the multisets
of is Post:T x P — Bag(P) . These functions determine a mapping of the set of arcs A, into set

1z of integer numbers (negative/positive) and set IR of real numbers which determines the
marking-dependent cardinality of the arcs connecting the places (events) with the respective
events (places). Also, the A, set is partitioned into subsets:

A=A UAUVAUVAUA, ANANANANA =D

The subset A, and A, contains respectively the discrete normal and continuous
normal set of arcs which can be seen as a function:

A, (P, xE)U(ExP,))xBag(P)—>1Z,and A, : (P, xE)U(E xP,))xBag(P) — IR.
The subsets of arcs A, and A,, are drawn as single arrows. The subset of discrete inhibitory
and test arcs is A, A : (P, xE)xBag(P) — IZ or that of continuous inhibitory and test arcs
is A, A : (P,xE)xBag(P)— IR. These arcs are directed from a place to any kind event. The
inhibitory arcs are drawn with a small circle at the end and test arcs are drawn as dotted
single arrows. It does not consume the content of the source place. The subset A defines
the continuous flow arcs A, : ((P, xT,)u (T, xP, ))xBag(P) — IR, and these arcs are drawn as

double arrows to suggest a pipe. The arc of a net is drawn if the cardinality is not zero and it
is labeled to the arc with a default value being 1;
« K,:P, —1Z is the capacity-function of discrete places and for each p, e P, this is

represented by minimum capacity K™ and the maximum capacity K™, so that
—0< Kg:"‘ <Kp* <+, which can contain a discrete number of tokens (anti - tokens). By
default, the Kgi“” =0and K™ — +ow0, and in this case no blocking effect occurs;

« K, :P. > IR is the capacity-function of continuous places and for each b, eP,it

min

and upper bounds x™ of the fluid, so that — o < X;

n

describes the fluid lower bounds x™
<X™ < +o0. By default, x™" =0 andx™ — +wo, and in this case no blocking effect occurs;

o Pri:ExBag(P)— IN, defines the dynamic marking-dependent priority function for
the firing of each enabled event, notede € E(M). The firing of an enabled event with higher
priority potentially disables all event e € E(M) with the lower priority;

o GF:ExINP' > {True, False} is the set of guard functions associated with all event
ecE and G®:pxIN/P' - {True, False} is the set of guard functions associated with all
rewriting rule T € p . For ane € E a guard function g(e, M) will be evaluated in each current
marking M , and if it evaluates to True, then event e may be enabled, otherwisee is disabled
(by default it is True);

. 7:E; xBag(p) > IR" is the firing delay time of respective discrete event e, ek,
wherein the set E, is partitioned into two subsets E;, =E, UE_, E,nE_ =, where E is a
set of immediate discrete events and E_ is a set of timed discrete events, so that Vt; €T, and
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vt €T, , Pri(t;)>Pri(t,). The immediate transitions are drawn as black thin bars and have a
zero firing delay time, i.e. for t; e Tythez; =0. The timed transitions are drawn as black
rectangles and have a nonzero firing delay time, i.e. for t, € T, ther, >0;

« 0:T,xBag(P)—IR" is the weight function of immediate discrete transitions t, €T, .
If an immediate transition t e T,(M) is enabled in current (a vanishing) marking M, it fires with

the following probability:
qt, M) =a(t, M)/ Y o(t,M);

teTy(M)

« V:T,xBag(P)— IR is the marking-dependent fluid rate function of timed
continuous transitions u; €T.. If u; is enabled in tangible marking M it fires with rate v,(M), so
that it continuously changes the fluid level of continuous places{b,} € u;.

o M, = is the initial marking of RHI' net. The current marking (state) value of a RHI'

net depends on the kind of place, and it is described by two vector-columns M=(m; x), where
m: P, > 1Z and x: P, —> IR are the marking functions of respective type of places. The

vV p, e P,)with m, =m(p,)that describe the
number of tokens in discrete place p;, is represented by black dots (also allowed to take

discrete marking m =(m,, K[,'?i” <m, <K

negative value, called anti - tokens). The marking x= (x,, X" <x, <x™, Vb, €P,) with X , which
describes the fluid level in buffers b, is a real number (real token), or negative real value (anti
- token). The initial marking of net is M, = (mo; o). Vectors moand xo give the marking of discrete
places and of buffers, respectively.

o Lib isthe set of RHT, k=1 2---,n_ subnet templates library involved in structural
reconfiguration of the current RHI" by firing of enabled rewriting rules € p.

Figure 3 shows the graphical representation of all RHI" primitives.
The role of the previous set of arcs and functions will be clarified by providing the

enabling and firing rules. Let us denote by m; the i-th component of the vector m, i.e., the
number of tokens (anti - tokens) in discrete place p; when the marking is m, (and X, denote
the k-th component of the vector x, i.e. the fluid level in buffersb, ).

| Discrete rewriting primitives Continuous primitives

™ Timed Normal arc m T Fl
Pl imed uid arc
(j ace transition . = |\ Place transition —_—
est arc Inhibitor arc
. Immediate >
o* Tokens transition -
3 Inhibitor arc Fluid Test arc
imed -
rewriting Setting arc
rule -

[ Immediate
3 rewriting
rule

Figure 3. All primitives of a RHI" models.

Figure 4 shows the possible connections between discrete places and buffers with a
discrete (resp. continuous) events through different types of arcs.

Enabling and firing rules of events. To define the RHI" enabling and firing rules, we
introduce the following notations:
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br " discrete
@ continuous set are inhibitor arc discreie place p: b, discrete
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o q:] / 4 N ; I /
e { \ r - i discrete normal arc
i ty /|~ b’ ==, flow arc ‘Ll{{. b", E P @ i/ p
s P ¥ ges @ D e N e
g 1 — , Sy continuous place E '@ ~— Inhibitor ar
P53 tzn < b; | ' ' e= = b,
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continugus place quardrfunctiun of fr '[*"f["'f' X) — guard function of u continugus place Quarﬂr;uncmn ofn
Figure 4. The posible connections between places with events through different types of

arcs.

. ‘e;={p, eP/Pre(p;e;)>0} the input set and e;={p, € P/Post(e;,p;)>0} the
output set places of event €;, and with “e; ={p, e P/ Inh(p;,e;)>0} the inhibition and
*ej ={p; e P/Test(p;,e;) >0} are the test set places of transition t;, respectively;

. If (Pre(p;,e;) <0) then I =Pre(p;.,e;); If (Post(e;, p,) <0) then O, =Post(e;, p;);
- If (Inh(p;,e;)<0) then In; =Inh(p;e;); If (Test(p; e;) <0)then Ts;; =Test(p,¢;).
Also, we denote by u, e T, the continuous transitions and by b, € P, the buffers that

can be distinct between discrete transitions and discrete places, respectively.
Let E(M)=T(M)up(M), T(M)np(M)=@ the set of enabled events in current marking M.

We say that an event e; e E(M) is enabled in current marking M if the following logic
expression (enabling condition ec;(M)) is verified:
Definition 3. (Enabling rule of events) We say that an event €; is enabled in current
marking M, denoted M [e; >, if the following logic expression ec;(M) is verified:
ec;(M)=eci™ (M) nec!™ (M) nec/" (M) Aec;™ (M) Ag,;(M), where:

e eci"(M )=vpi/e\,ej (M(p{) =Pre(p;.e;)) A((Ky™=M(p,))=—1;,)) is the enabling

condition relative to the normal arcs input, that are incident to €;and to the capacities of the
places pe’e;, and M(p;)= M(pi)—K;j‘“ is the effective number (discrete or real) of tokens in p, ;

e ec;™(M)=_A ((M(p})=Post(e;,p,) ) A((K;™-M(p,))>-0;,)) is the enabling

Vv pee]
condition relative to output normal arcs, that link these incident places to the transition ¢,
and to the place capacities of p; € e} :

e ec"(M)= G (M(p7) < Inh(p;,e;))A(=M(p;7)<Inj;)) is the enabling condition

pi€ ‘ej
relative to inhibitory arcs;
e ec™(M)=_A_((M(p;)=Test(p;,e ))A(M(p{)=-Ts;,)) is the enabling condition

Vpie'e
relative to inhibitory test arcs.
Also, we note by E,(M)=T,(M)up(M),T(M)np(M) =0 the set of enabled discrete

events in a current marking M, whereT,(M)and p(M) are the sets of enabled discrete
transitions and enabled rewriting rules, respectively.

In RHI models, concurrency of enabled events is also represented in a natural way.
Two or more enabled events are concurrent at a given marking M if they can be fired at the
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same time, i.e. simultaneously. Every event enabled by a current marking M can fire but is
never forced to fire if they are in conflict. Conflict occurs between events that are enabled by
the same marking, where the firing of one event disables the other. In this case, it is necessary
to define how and when a certain conflict should be resolved, which leads to non-
determinism of its behavior.

Firing rules of enabled events. Let "W ={"W, W*, ‘W }be the weights of the respective

type arcs in A and E, c E is the set of discrete events. We note Atr. ={*W, K,, K, Pri, G,

Gf, T, w, V} the set of quantitative attributes of the currently activated (sub)nets type RHI .
Also, let RN =<T, M > be the current configuration of RHI", where T=RHI'\M and M is the

current marking of RHT".
A dynamic reconfiguration of current RN by the firing of enabled r € p is a map

r:{RHL, Atr }>{RHR, Atr, }, where {RHLe Lib,,, Atr_ eLib,, } is the left-hand side and
{RHRe Lib, , Atr,elib,} is the right-hand side of the rewriting operator > assigned to

RN 2

rewriting rule 1, respectively. The > represents a binary rewriting operation which produces

a structural change and/or change of attributes in RN by replacing (rewriting) the fixed current
subnet {RHL, Atr, }< RN, RHL are dissolved (with P. < P, E, < E, and subset of arcs

A < Aand/or Atr, are deleted) and in run-time, a new {RHR, Atr, } subnet (with P, c P,
E, € E, and set of arcs A, and/or Atr, are added) belong to the new modified resulting
underlying net RN’=(RN\RHL)URHR with P'=(P\P)uP, and E’'=(E,\E )UE,,
A'=(A-A )+ A, where the meaning of \ (and L) is operation of removing (adding) RHL
from (RHR to) current RN. In this new RN'net, obtained by the firing of ¥ e p(M), the same

elements (places, events and arcs with respective specified attributes) belonging to RN' are
respectively merged [24]. For example, when merging the same place y € P from two different

RN; and RN; subnets with the respective current marking m(y) =n;and m(y)=n;in this
place, the resulting number of tokens (anti-tokens) in this place will add up: m(y) =(n; +n;) .
The current tangible state configuration of aRN net isy =(I', M), i.e. the current

structure configuration of the I net together with a current marking M at time7 . Also, the
tangible y, = (I;,,M,) is the initial configuration of analyzed RHI".

Firing rule of enabled discrete events. An enabled event e, e E,(M) fires if no other event
e, € E;(M) with higher priority has been enabled. Hence, for eache,eE (M) if
((e;=t;)v(e;=p; ) A (g7 (F,,M):="False")) then (the firing of t, e T,(M) or firing of p, e p(M)
changes only the current marking of RN: ((T', M)[e; >(I', M")) & (I'=T and M[e, >M'in 1)),
whereM'=M —Pre(9,) + Post(9,). The vectors Pre(,-) and Post (9, ) are the functions
induced by those respective Pre and Post incidence matrices of the RHI" [21-24]. Also, for
everye, eE (M), if ((e;=p;) A (gR(pJ., M) :="True")) then the event e; occurs at firing of the
rewriting rule p; € p(M)and it changes the configuration y, =(I',M) and marking of the current
RN net, so that:((T', M)[p; > (I, M")) & (C=T"and M[p; >M'inI"),i.e. y. =(I",M’).

The firing of an immediate discrete event e, e E,(M) enabled in marking M =(m, x)
yields a new vanishing marking M'=(m’, x). We can write (m, x) [&; > (m, x). If the marking M
= (m, x) is tangible, the fluid could continuously flow through the flow arcs A of enabled
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continuous transitions into or out of continuous places (buffers)b e P,. As a consequence, a
continuous transition u eT, is enabled at current marking M if for every buffer, fluid level
increases or decreases, and its enabling degree is: enab(u, M) = min__. {x(b)/Pre(u, b)} [21]. The
reachability state graph (in short,RG.,.) of configurations y =(I,M) from initial
configuration y, =<T,,M, > is the labeled directed graph whose nodes are the states y, and
whose arcs, which are labeled with fired events 6. e E,(M) of RN , are of two kinds:
() (RT,M)[e; > (RL,M") if ((e; =t;) v (e; =F)) A(g%(p;,M) ="False");
(i (RT,M)[p; > (RT",M") if (e; = p;) A (9" (p;, M) :="True").
This enhancement allows the compact representation of high complexity analyzed
ESNMC models, without the risk of having a very complicated and too difficult to understand
graphical presentation through RTHPN model. Also, RHI model supports a definition of a

modular and hierarchical design methodology.
We note the fact that in any configurationy_ =(I',M), tokens and anti-tokens cannot

coexist in the same place of RHI", they will immediately annihilate each other, so the neurons
always contain either only spikes or anti-spikes. The annihilation is possible in each marking
M with m =M(p,)>0, (resp. x, =M(b,)>0)), tokens and a, =M(p,)<0, (resp. y,=M(b)<0),
anti-tokens, in the same place. This mutual annihilation of spikes and anti-spikes takes no
time. This action produces a vanishing state that immediately changes the couple (m,, a,),

(resp. (x;, y;))-More precisely, both m  anda,, (respective x, andy,), will decrement
simultaneously when the values are non-zero. This implies that in each place p, (bufferb,)
we can have a current marking m; either with0<m, <K™, (respectivelyo<x, < Ky™) or witha,
, K" <@, <0 (respectively Kb”i“” <y, <0). As a result, if (Pre(p;,e;) > 0) then the firing of event
e; € E(M) consumes from (produces in) the same place p, (bufferb,), a number Pre(p;.e;)>0
of tokens (anti-tokens). Otherwise, it produces in (consumes from) the same place a number
Pre(p,.e;) <0 of anti-tokens (tokens). Also, if (Post(e;,p;)>0) then the firing of event
e; € E(M)produces in (consumes from) the place p, (bufferb) a number of tokens (anti-
tokens), otherwise it consumes from (produces in) the same place a number Post(e;, p;) <0 of

tokens (anti-tokens).

Upon firing, the discrete (continuous) transition removes a specified number (quantity)
of tokens or anti-tokens for each input place, and deposits a specified number (quantity) of
tokens or anti-tokens for discrete (continuous) output places. The fluid levels of continuous
places can change the enabling/disabling of events.

We allow the firing delay r; and the enabling functions of the timed discrete events

e; e E4,(M), the firing speeds v, and enabling functions of the timed continuous transitions
u, € E.(M) and arc cardinalities (positive or negative values) to be dependent on the current

state of the RHI", as defined by the current marking M.

Next, for accurate translating GIT models into RHI" models, we consider RHI" models
only with firing step semantics of discrete eventsE, = & and in whichT, = . If in a RHT model
the set of rewriting rules is empty, i.e. p = &, then we deal with particular flat model, denoted as HT'.

An example of a HI'l subnet with negative capacities of places and arcs, whose
marking-dependent cardinality can be negative, is shown in Figure 5a. In HI'1 the minimum
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capacity of the places are K;ji” = Kg“” =-5, i=1,..,4 and the arcs with weights that have
negative values are Post(t;, p,) = -3, Post(t,,b,) =—4.5, and the others have positive weights.

The initial marking of the subnet HI'1 in Figure 5aisM, =(3, 0, 4, 5;4.5,3.8,1.5,-2.7).
The firing of transitiont, produces a new marking M,=(4 5, 3, 2;20,28-3.0,-17), ie.
M,[t, > M,. This fact is shown in Figure 5b. We note that the negative weight of some arcs
leads to a change in the direction of the tokens flow, thus modeling reversible arcs.

p1 b1 p3 b2 p1 b1 3 b2
@ ) D= & @

t1 2 — " =

b . § e v [ N3 =

d p2 ({2‘0)b4 \@m @/pz 17b4 \®p4
a) b)

Figure 5. Discrete transition t, firing of a HI'1 flat subnet.

Parallel activities can be easily expressed in terms of RHI" using maximally firing step
semantics in which executions of enabled discrete events E, — E are represented by a

sequence of steps [15 - 18], [20]. Steps in RHI" are sets of enabled discrete evens that fire
independently and parallel at the same time, i.e., simultaneously. The change in the marking
and/or configuration of the RHI when a step occurs is given by the sum of all the changes
that occur for each event.

Definition 4. (Firing step) A firing step in RHI at time 7 is a set . of enabled events
which are free enabled in a current configurationy, = (I', M), i.e. . c E(I', M). A firing step
6, can be executed at time 7, leading to the new markingM'iny; =(I',M’) or new
configurationy! =(I",M’) if there is no other 6] cy, enabled set of events with a higher
priority than ..

A computation of aRHT is a finite or infinite sequence of step executions at time 7,
starting from the initial configurationy, = (I;;, My)and every configuration » =(I,,M,)
appea-ring in such a sequence is called reachable.

We note that the modeling power of RHI nets is equal to the Turing machine, because
it contains guard functions and/or inhibitory arcs [19, 26]. In [28] it was demonstrated that
for any Petri net model with reset arcs the accessibility property is not decidable. In general,
the accessibility properties of RHI"are not decidable, because in this type of Petri net the

reset arcs can be described through marking-dependent functions of arcs. But, for particular
cases of RHI", some behavior properties can be decidable.

4. Simulation and analysis of ESNMC models using RHI" nets

The behaviour of the SNPS and ESNPC models is often similar to TPN [17, 18] and also
of the one RHI" nets, where is used a time maximally firing step semantic of enabled events.
So, a major strength of RHIis their support for analysis of many behavioural properties
associated with SNPS [17, 18], ESNPC models and RHI such as reachability, boundedness and
safeness, liveness, terminating, deadlock-free [19-22, 24]. We are checking these properties for
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SNMC and ESNMC models based onRHI', that provide relevant information about the
behavioral properties of the systems.

Next, we will describe an approach to translate SNMC and ESNMC models into RHI
nets with step semantics for the visual simulation and to study the behavioural properties of
such models. For this one, we illustrate the applicability of our approach by visual simulation
and analyze the behavioural properties a SNMC and ESNMC models using VPNP Tool [24].

First, to give the pictorial visibility of RTHPN models, similar to that of SNMC and
ESNMC models, we will first show how a RHI'Omodel describing the behavior of a neuron o;

of aGIl model is constructed. Then, we will show how the modelRHI'Lis constructed, which
adequately describes the behavior of theGI12 model that is presented in Figure 6.\

([ 25 12 % \:
in_| [a™,a 23 [4,a] )1 GID
}il:af)ﬂ!q*bﬁz —)as,(),l rm:apﬂ“s_bﬂs_)d‘;al o
| S J J 5
o —tral
[ [Lal Y o ryd™ 12,0
: . 2.1 Rk o
B d™ e a0 ‘ [4,a™] 13 l
= _ pfluby). . . plu-b), o out
£1_Cf “ —XTS,ZQ r“ap %?,Qlj

Figure 6. The ESNMC model GI12 (Adapted from from [10]).

Figure 7 presents an ESNMC2 modelRHI'0 that translates neurono; of aGIl model,
which is shown in Figure 1. There the neuron o is represented using a continuous placeb;
which is connected to the timed rewrite rule p;, by a test arc with weight X; ; that is the
current number of spikes in bufferb, , . In RHI' models, places (transitions) correspond to local

states (events, actions, activities) and rewriting rules can modify, reconfigure these models.
The arc between a place and transitions (rewrite rule) and places represents axons.

Figure 7. A RHI'0 model of neuron o, inGII model that is showed in Figure 1.

The attribute notations in all the following figures, that representRHI or HI' flat
models, will be interpreted in the following way: yi.j:=Yy;,,whereye{b, p,t, p, 9, ge, w, x}
and the first index | shows the order number of the neuron o,, and the second index k shows
the order number of the symbol (attribute) Y within this neuron or this GII model.

The meanings of the places, transitions and rewriting rules of the RNRo; model are:

e Continuous places: in b,

.1, b,and b, is stored (memorized) the respective current

numbers X ,, X, ; and X, , of spikes (anti- spikes).
* Immediate transitions: the firing of t;,,t;,andt,;, , transmit a respective number

(equal to respective weight) W, ;, W;,; and W, ; of spikes (anti- spikes) in continous placesb,, .
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« Timed rewriting rule: at firing of rewriting rules p,, :{p,;}> RNRo; the p,, is removed
with its incident arcs and they are simultaneously replaced with the flat subnet RNRo; € Lib
that is shown in Figure 8 In this case the places b;,, b _,;and b,,,, are respectively merged, so
that the number of spikes (anti - spikes) in respective place of RHI0\{p,,}and RNRa; will be

equal to their sum.
The guard function of p, ; which determines the enabling condition isge;, = (x;, #0)

, and the one which determines the firing condition isgr,, :="True".

bi.1 fi.1 bi.3 ti.7 - OK
] ] ] wik

_ (k1 |
gL : :

xi.3

ey <R

wil b3

" pi3  ti5 pi5

i

Figure 8. Flat RNRo;, flat subnet which substitutes p;, inRHI'0 model shown in Figure 7.

The initial marking of b, b, ,and by, in RHI0 is M., =(0;x) =(0;25,1.7,-1.3). At the
firing of p, ; , a respective number of spikes (anti- spikes), equal to the respective weightsw,
and w, , ,, will be transmitted in respective place b, ;and b, .

The meanings of the places and transitions of the model RNRo, subnet, with 2 spike
evolution rules p;, and p; , of o;are:

* Continuous places: in b, ;, b _;and b, ,,, are stored (memorized) the respective current
numbers x, ., x,, and X, ; of spikes (anti- spikes). These places will merged respectively with
those in theRHI'2model; in b, , is stored the threshold value; b, , - buffer to check the value
of production function pf; = (X, —X;,) |, with critical value ¢

* Discrete places: p,, - initializing the probabilistic selection of a single evolution rule
pior p;,ofo;; P, (resp.p;,) - setting the time of p; , (resp. p; ,) that neurono; receives
spikes from the“o;; p;, (resp. p;, ) - setting the rule p,, (resp. p; ,) execution time.

*Timed discrete transitions: t;, (resp. t; ;) - the execution timer;, (resp. 7;,) of rule
piL (resp. pi, )t 4 (resp. ;o) - the time/, (resp. 7/,) of rule p;, (resp. p,;,), that neurono,
receive spikes from the‘o;.

 Immediate discrete transitions:t; , (resp.t; ;) - mutual exclusion activation of rule r;,
(resp. I, , ). These transitions perform the probabilistic selection of evolution rules. By default,
selection is performed non-deterministically; t;, - generation of spikes;, guard function
0;; = (pf; > ), and transmision of spikes; - w;, to neurons o ;t; s - no spikes can be sent to
the connected neurons witho;, guard function g, = (pf, <¢), the value unit u; =X ;of

buffer X; ; is consumed.

Journal of Engineering Science October, 2023, Vol. XXX (3)



Simulation and analysis of spiking neural membrane computing models based on rewriting timed... 93

The guard function of t;, andt,;is g;, :=(m;, #0)and g;; =9;,, respectively. As a
result, at firing of p, , rewriting rules of RHI'0, will reconfigure itself and we get the flat HI'1
model that is represented in Figure 9.

ol
PR wili

T JK’*}

K-y kL
igf.k—l

Figure 9. A flat HI'1 model of an neurono; with 2 rules.

If it is necessary to analyze the behavioral properties of an ESNMC model, which
contains severalGIltype neurons, it can be mapped into a RHI type model, using the approach
used to build the modelRHI'0 of neurono,. In this context, we will consider as an example

the GII2 model, shown in Figure 6, for which we construct the RHI'L model (see Figure 10)
whose running behavior is equivalent to theGIIl model. We notice that there is a similarity
between the structures of these two types of models. The reader might notice that the
structure of the RHI'2 model is similar to the oneGII2 from Figure 6.

The meanings of the places, transitions and rewriting rules of the RHI'Lmodel are:

* Continuous places: inb,,,i=12,...,5is stored (memorized) the respective current

numbers x;,,i=12,...,5 of spikes (anti- spikes) in neurono; ;b, , - the environment receives

the transmitted spikes;
« Timed rewriting rule: at firing of rewriting rules p,, :{p,,}>RHRIi.1 thep,,, i=1,...5

and p,, :{pi}>RHRO are removed with its incident arcs and they are simultaneously

replaced with the respective template subnets {RHRi.1, RHR(} € Lib that are shown in Figure
11. In this case the places b, ,are respectively merged, so that the number of spikes (anti -

spikes) in respective place of RHI'1\{p,,} and template subnets will be equal to their sum.

The guard function of p,;,i=12,....5 which determines the enabling condition is
gei.i=g;, =(x;, #0), and the one which determines the firing rewriting condition, by default is
g ="True". The initial tangible markingof b, , i =1, 2,...,.5in RHI'1 is x=(25,0,0,0,0) =
(2.50,,). At the firing of p;,, a respective number of spikes (anti- spikes), equal to the
respective arc weights w,, and W, ,.,, will be transmitted in respective place
b ., i=12,...,5andb,, .

In the result of run-time reconfiguration of RHI'1model will be obtained the flat HI'2
model that is shown in Figure 12. The meanings of the respective places, transitions, arc
weights and guard function of the HI'2 model are the same as in the HI'L.model that is shown
in Figure 9. In case that in RHI models the input value of the neurons o; can be positive (negative)

integer numbers then continuous places bi’k ,k=1,2,3, will change to respective discrete places
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Pk, K=12,3. Likewise, if in RHI models the execution timez;, =0and/or the time 7/, =0,
neuron o; receives spikes from the ‘o, then the respective timed discrete transitions

will change to respective immediate discrete transitions (as example, see t,,in RHR2.1and
t;,in RHRS5.1subnet) or they are removed (see RHR1.1, RHR3.1 and RHR4.1subnets).

In order to perform the visual simulation and check the behavioral properties of the
HI flat models we have developed and integrated into VPNP Tool [24] a special software
module. The Graphical User Interface (GUI) allows an intuitive, user-friendly tool for creating
and editing HI" nets in an easy, fast and effcient way. Users are able to perform tasks using a
menu bar, a toolbar and mouse actions. The HI" nets can be printed or exported into graphical
format bitmap. VPNP Tool supports the parallel execution of events. It offers a visual animator
so that the user can in step-by-step mode or automatically experiment with the token game,
firing any of the enabled events (transitions and rewriting rules) at each firing step. Animation
history is recorded, i.e. all the time fired events can be seen on the side of the screen.

g4.1

b4.2 4.3 g 4. 3 7

Figure 11. The template subnets involved in reconfiguration of RHI1.
model upon firing of rewriting rules p, , :{p;,}> RHRi.1.

In this context, a numerical example may be examined to demonstrate the applicability and
utility of the RTHPN proposed approach for simulation and analysis of ESNMC models. With
this purpose we performed the visual simulation, using upgraded VPNP Tool [24], of the
HI'2 flat model with the following values of the timed transitions:z;, =1, 7;, =1, 7,, =2,

ry, =1 1,,=1 75, =2, 7,, =7time units and with weightw,, =2.5.
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Figure 12. The HI'2 flat model obtained after run-time reconfiguration of the RHI'L model.
The symbolic reachability graph (RG) of the HI'2 flat model, constructed with these
parameters, is shown in the figure 13.
The arc labels of this RG represent step firing sequence set of transitions at time
7, =k, k=1,2,...,K time units. The meanings of these labels are: 9 (r,) ={t,.t,,}, % (z;) ={t,,}.
for I of GIT2: l921(72) :{t2,2t2,1t2,7}||{t3,1t3,2}||{t5,4}a l931("'3) :{tZ,Z}”{tS,ltS,Z}' l941(74) :{t2,1t2,7}a
95(r;) ={t,,,} and for 1, of GII12: for I, , * 9;(r,) ={t, s} Hts 1ts o} H{ts ts 1t 2} It 13,
'932 (73) ={t, st,st, 6}, L942 (74) ={ts b5 1ts 5}
In the label expressions shown above, the operator ||indicates the parallel firing of

the respective sequences of transitions. The meanings of discrete places subsets that are
marked in RG1 of HI'2 flat model are:

m,=m, = (po,l P2, p5,2): m, = (po,l P21 ps,z)i m2 = (po,l p2,1 p5,3)v

m, = (2 Po1P2,3 ps,z)v m, = (2 Po.1P21 ps,s)a mg = (2 Po,1 P21 ps,z) .
The GUI screenshot of VPNP Tool with moment of time that the tokens (spike) occur in
the continuous placeb,,and the history of the configurations y, with drawing the firing of

respective transitions in the HI'2flat model is shown in Figure 14.

Figure 13. The symbolic reachability graph RG1lof the HI'2 flat model.

Thus, the behavior of the HI'2 net is similar to the behavior of theGI12 model and these
are the following behaviur properties: bounded; non-safe; live; deadlock-free. Immediate
transitions t,,and t;;(resp. t,, andt,,) in template subnets RHRi.l (resp. RHR2.1) are

replaced by immediate rewriting rulesp;,and  p;;(resp.p,gandp,,)  with
0%, =0 =0s6=0;, ="False", i=134,5. We get behavior of RHIlmodel which is
equivalent to that of the flat HI'2model.
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Figure 14. The GUI screenshot of VPNP Tool with the time tokens (spike) occurences in
the continuous place by, and the history of the configurations y, of HI'2 model.

In order to obtain a more compactRHI" model during the run-time firing of these
immediate  rewriting rules in  flatHI'2model it is necessary to put
9% =07 =055 =05, ="True", i=1 34,5 and to specify these rules to reconfigure the HI'2

model in an abstract form similar to the RHI'L model. For this purpose we specify the following
template subnets when firing these immediate rewriting rules of flat HF2model:
pi, - RHLI.2>RHRi.2, p,;:RHLi.3> RHRI.3, i=1,34,5;
P - RHL2.6>RHR2.6, p,,: RHL2.7> RHR2.7.

Due to the volume restrictions of this paper not to present in graphic form the above-
mentioned template subnets, they will be rendered in analytical form, using descriptive
expressions (DE), the syntax and semantics of which are described in the papers [16, 26, 29].

Hence, the respective descriptive expressions (DEs) of these left-hand side and right-
hand side template subnets of flat HT2 model are:

DEgniiz = DEguis ={tis 0o Bis 10 01 1 1=13 4
DEguiss = DEgpss ={ts1s tsas Psas PsaiDs20 B30 0500 055
DEgpizs = DEgpiar ={to1s ts s sy Poxs Pazs Poss PoasD2i Doy P20 P22 1
DEguiz = DEguis ={tin bio Bis 212 213 11213 4
DEgyriz =0, X1, | |p1,1 (2.3b;,[2.3]01.4b, ,[1.4]), DEgyg,, =y, [x2.1], |p2‘l 3.1b,,[31],
DERHR3.2 = b3,1[X3'1]ge3_1 |p3‘1 (1'0b2,1<> 2-1b5,1[2'1])’ DEqiras = E;4,1[)(4-]-]9% |p4‘1 _1-3b5,1[_1-3] ;
DEgiris = bl,l[X]"l]gel_l |pL1 (ba,1[2-3]<> b2,1[1-4]) , DEgiros = b2,1[X2'1]ge2_1 |p2‘1 b4,1[3-1] )
DEgiras = b3,1[X3'1]ge3v1 |p3v1 (bz,l 0 b5,1[2-1])’ DEqigas = b4,l[X4'1]geA‘l |p4‘1 b5,1[_1-3] )
DEqigs, = bs,l[XS-]-]ges_1 |,04,1 1bo,1; DEgrss = b5,1[X5'1]ge5‘1| . bO,l'

We note that one of the most important benefits we obtain from the use of RHI nets
when maping and verifying the discrete-continuous processes of SNMC and ESNMC models
is that the structure of these models is similar, very concise and flexible to reconfiguring and
changing the quantitative parameters during run-time of these RHI nets.

Ps,

Journal of Engineering Science October, 2023, Vol. XXX (3)



Simulation and analysis of spiking neural membrane computing models based on rewriting timed... 97

A generalization of this approach consists in assuming that the firing times
7. E, xBag(p) — IR of the respective discrete eventse; € E,are random variables whose

probability distribution functions F(-) have contained support in the set of non-negative real
numbers. In this case we obtain stochastic RTHPNs that allow simulation and performance
analysis of the stochastic ESNMC models.

4. Conclusions

For the purpose of efficient formalization, implementation and formal correctness
analysis of SNMC and ESNMC models, in this paper we define and describe a new extension
of THPN, called rewriting THPN with anti-tokens (in short, RTHPN) having guards for
transitions, rewriting rules and implicitly annihilation rule of tokens and anti-tokens in same
places. The features of RTHPN accept as well the negative (positive) values for: place
capacities; markings of discrete and continuous places; marking-dependent arc cardinalities.
The RTHPN model allows its structure and/or attributes to change at run-time depending on
its current state and/or the occurrence of some events which permits a hierarchical design.
Therefore, functionalities and features of system models can be added gradually in run-time.

In order to perform the visual simulation and check the behavioral properties of the
HI" flat models, we have developed and integrated into VPNP Tool a special software module.
Also, we present a methodology that maps the large SNMC and ESNMC models into compact
RHI" and flat HI nets, which allows analysis of such models via the upgraded VPNP Tool in
an easy-to-use manner. The use of RTHPNs in simulation and analysis of ESNMC models is
illustrated through an example proving that such approach preserves faithfully their
behaviours.

In the future, we will develop and integrate into the VPNP tool special software
modules that will allow analysis of RTHPN models involving the simulation of stochastic
ESNMC models, Spiking Neural P Systems with Self-Organization and Spiking Neural dP Systems.

Conflicts of Interest: The authors declare no conflict of interest.
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