
6th International Conference “Telecommunications, Electronics and Informatics” ICTEI 2018

Chisinau, 24—27 May 2018

Pseudo-ring testing of the FPGA memory using

software Nios processor

Serghei Grițcov, Gherman Sorochin, Tatiana Sestacov

Technical University of Moldova

Chisinau, Moldova

gritscov@gmail.com

Abstract — In this paper we review FPGA of the Altera

company and we present an example of a ‘software’

microcontroller based on Nios processor creating. Also an

algorithm for memory self-testing was developed and

implemented on C language. This algorithm provides self-testing

of the Nios and FPGA memory. Also this algorithm is based on

pseudo-ring testing methods, which allow to significantly reduce

hardware resources for self-realization.

Key words — Field Programmable Gate Array (FPGA), Nios,

self-testing, psedo-ring method.

I. INTRODUCTION

Most modern electronic systems are based on digital data

processing devices such as microcontrollers, DSP (Digital

Signal Processor), FPGA (Field Programmable Gate Array),

SoC (System-on-a-Chip) and others. If it is necessary to

process a large data stream in a short time interval FPGA or

SoC are used. Only FPGA or SoC are able to process parallel

data on high speed. Many modern FPGAs and SoCs contain

built-in MCUs or allow it to be implemented on software

level. Using a MCU (microcontroller) with FPGA simplifies

programming on FPGA reducing time of the projects

development. The implementation of MCU and FPGA based

on a single chip requires a lot of resources. Also it is required

on many projects that FPGA and SoC should have minimum

dimensions and reduced power consumption. This is possible

with decreasing the lithography which leads to decreasing the

thickness of the conductors and distance between the elements

in the chip [1]. This feature leads to increasing of the defects

and faults [2]. For the faults detection on FPGA and SoC a

BIST (Built-in Self Test) is usually used [3]. Most of the BIST

use classical and march testing methods which require

significant hardware costs for their implementation [4].

In this article we will consider a pseudo-ring method for

FPGA testing which provides much lower hardware costs for

its implementation with respect to known techniques [5]. The

second paragraph describes FPGA of the Altera company. Also

an example of Nios processor generating is given. In the third

paragraph pseudo-ring method of memory testing and its

features are considered. In the fourth paragraph a few examples

of FPGA with MCU memory self-test programs in the C

language are given.

II. FPGA OF THE ALTERA COMPANY AND A SOFTWARE MCU

IMPLEMENTATION

Altera like many other companies produces FPGA and SoC

with hardware-integrated MCUs [6]. A significant part of the

FPGA doesn’t include a built-in MCU. When we implement a

project it becomes necessary to have an MCU with FPGA in

the project. For such cases, Altera has developed the ability to

add a software processor. Let’s consider the EP4CE22F17C6

FPGA of the Cyclone IV E family. The main characteristics of

this FPGA are shown in Fig. 1.

Fig. 1. Main characteristic of the EP4CE22F17C6 [7].

The main characteristics for this FPGA are 22000 of the

logic blocks and 594 Kbits of the embedded memory. It is

quite enough for a project based on a FPGA implementation

and generating a software MCU.

We’ll generate a MCU based on this FPGA. For such

implementation we can use Quartus II which provides a

system of the SOPC Builder library modules. We’ll connect

32-bit Nios processor to the MCU, a timer, a port for input and

output of data and memory for instructions and data. The

resulting architecture is shown in Fig. 2.

Fig. 2. A software MCU architecture.

328

6th International Conference “Telecommunications, Electronics and Informatics” ICTEI 2018

Chisinau, 24—27 May 2018

We’ll compile the project. As the result the resources used

for MCU implementation are shown in Fig. 3.

Fig. 3. Resources used for MCU implementation.

As we can see from Fig. 3 MCU takes 17% of logical

elements and 65% of memory. Thus any project implemented

on this FPGA will consist of two parts: a data processing

system on the FPGA and a software MCU.

III. PSEUDO-RING TESTING

After the project is implemented on the FPGA with MCU

it is necessary to provide the possibility of a self-test of the

entire device. From the sources [8] it follows that the most

effective from the point of view of hardware costs for self-

realization is the pseudo-ring method of testing. Let’s consider

this testing method more detailed.

The basics of the pseudo-ring testing method includes 3

parameters: 1) the definition of the LFSR (Linear Feedback

Shift Register) structure, 2) the setting of the initial state of the

LFSR and 3) determination of the moving direction of the

LFSR [2]. LFSR is a test sequence generator combined with a

result analyzer. The structure of LFSR is given by the

structure of an irreducible polynomial [2]. An LFSR can be

‘virtual’. It is means that LFSR is implemented on the

memory resources [9]. An example of this implementation of

the pseudo-ring testing is shown in Fig. 4.

Fig. 4. The idea of the pseudo-ring testing.

The initial state ‘Init’ is written to the LFSR. The next

LFSR value is calculated and the ‘virtual’ LFSR is shifted at

one position to the left. Thus LFSR passes through all the

memory cells overwriting their state. If the number of memory

cells coincides with the period of an irreducible polynomial

that specifies the structure of the current LFSR then the initial

and final states of the LFSR must match. In this case, no faults

were detected [9]. The algorithmic complexity of this test is

3n:)}(,,{ 121 iiiii rrwrr .

It is necessary to take into account such parameter as the

faults frequency. Conform data which is presented in [10] the

most frequent memory faults are SAF (Stack-at Faults). Their

frequency is more than 50%. To detect them we can use

pseudo-ring testing based on reducible polynomials [11]. An

example of LFSR for this test method is shown in Fig. 5.

Fig. 5. LFSR based on reducible polynomials.

In this case testing will be realized in two steps as is shown

in Fig. 6.

Fig. 6. Pseudo-ring testing based on reducible polynomials.

The difference between classical pseudo-ring testing and

this method is that there are only two initial states: reset LFSR

to ‘0’ and set all LFSR bits to ‘1’. The first test detects all

faults of type SAF1 (single constant fault ‘1’), and the second

– SAF0. In the second case, after the XOR operation the result

is inverted which allows us to assign the value of ‘1’ to all

memory bits.

Let’s consider pseudo-ring testing implementation based on

reducible polynomials.

IV. FPGA SELF-TESTING BASED ON PSEUDO-RING TESTING

Here is an example of the self-testing program

implemented on C language for software FPGA MCU. Testing

is divided into two parts: testing the MCU's own memory and

329

6th International Conference “Telecommunications, Electronics and Informatics” ICTEI 2018

Chisinau, 24—27 May 2018

testing the memory modules used in the project on the FPGA.

The first type of memory is internal to the MCU and the

second type of memory is external. The algorithm for memory

self-testing is shown in Fig. 7.

Wi+2=ri xor r i+1

i<Fin

No Faults

ri==0 & ri-1==0

STOP

-

+

+ -

3

5

6

7

START

Set Init and Fin
address (i=Init)

1

W0 (init state)

2

i++

4

Faults

8

Fig. 7. Self-testing algorithm for the software MCU.

In Fig. 7 block 1 indicates that we must enter the start and

end memory addresses. Also the value of the initial memory

address is written to the counter ‘i’. Block 2 allows us to write

‘Init’ value in the LFSR. For this case ‘0’ is written to all

LFSR bits. In block 3 the next LFSR value is calculated which

is written to the next memory cell. In block 4 value of the

counter ‘i’ is incremented by 1. In block 5 it is determined if

the LFSR has passed through all the cells of the tested

memory. After the LFSR pass through all the tested memory

cells it is checked if ‘Init’ is equal to ‘Fin’ value. If the

equality is fulfilled then we can assume that there is no SAF1

in tested memory.

Let's consider an example of this algorithm implementation

for detecting faults SAF0 and SAF1 for MCU internal

memory.

unsigned int data = 0x00000000;

unsigned int startAddr = 0x00019000;

unsigned int endAddr = 0x00019FFF;

unsigned int offset = 0;

IOWR_32DIRECT(startAddr, offset, data);

offset++;

IOWR_32DIRECT(startAddr, offset, data);

while (offset < endAddr)

{

 offset++;

 reg1 = IORD_32DIRECT(startAddr, offset-2);

 reg2 = IORD_32DIRECT(startAddr, offset-1);

 IOWR_32DIRECT(startAddr, offset, (reg1 ^ reg2));

// ~(reg1 ^ reg2) for data=0xFFFFFFFF;

}

if((IORD_32DIRECT(startAddr, offset-1) != data) &&

(IORD_32DIRECT(startAddr, offset) != data)){

 error = 1;

}

In this code ‘data’ means the initial LFSR state, ‘offset’

means the offset of the memory cell address for writing or

reading. The ‘while’ loop executes the testing process:

)}(,,{ 121 iiiii rrwrr . After the loop we check if any

faults were found. This code is for SAF1 detecting. For SAF0

detection we need to replace: ‘(reg1 ^ reg2)’ with ‘~ (reg1 ^

reg2)’ in the last line of the loop and the value of ‘data’ from

‘0x00000000’ to ‘0xFFFFFFFF’.

If external memory testing is performed the data is

transmitted to the I/O port. Also it is necessary to configure

control lines and external memory addresses.

static void write(unsigned int addr, unsigned int data)

{

 IOWR_ALTERA_AVALON_PIO_DATA(WRITE_

EN, 0);

 IOWR_ALTERA_AVALON_PIO_DATA(ADDRES

S, addr);

 IOWR_ALTERA_AVALON_PIO_DATA(CONTR

OL, 0);

 delay(10);

 IOWR_ALTERA_AVALON_PIO_DATA(DATA,

data);

 IOWR_ALTERA_AVALON_PIO_DATA(CONTR

OL, 1);

 delay(10);

 IOWR_ALTERA_AVALON_PIO_DATA(WRITE_

EN, 1);

}

330

6th International Conference “Telecommunications, Electronics and Informatics” ICTEI 2018

Chisinau, 24—27 May 2018

static unsigned int read(unsigned int addr)

{

 IOWR_ALTERA_AVALON_PIO_DATA(READ_E

N, 0);

 IOWR_ALTERA_AVALON_PIO_DATA(ADDRES

S, addr);

 IOWR_ALTERA_AVALON_PIO_DATA(CONTR

OL, 0);

 delay(10);

 IOWR_ALTERA_AVALON_PIO_DATA(CONTR

OL, 1);

 data =

IORD_ALTERA_AVALON_PIO_DATA(DATA);

 delay(10);

 IOWR_ALTERA_AVALON_PIO_DATA(READ_E

N, 1);

}

write((startAddr+offset), data);

offset++;

write((startAddr+offset), data);

while (offset < endAddr)

{

 offset++;

 reg1 = read(startAddr+offset-2);

 reg2 = read(startAddr+offset-1);

 write((startAddr+offset), (reg1 ^ reg2));

}

if((read(startAddr+offset-1) != data) &&

(read(startAddr+offset) != data)){

 error = 1;

}

In this code ‘write’ function means writing in one memory

cell of the external RAM. The ‘read’ function is intended for

reading data from one memory cell. ‘CONTROL_EN’,

‘WRITE_EN’ and ‘READ_EN’ are memory control outputs.

The rest of the code repeats the code described in the first

example: initializing LFSR performing pseudo-ring testing

and comparing the final state of the LFSR with the initial.

These examples allow us to perform a self-test of the both

the built-in MCU memory and external memory which can be

used in the project on the FPGA. These examples can be

connected to any projects on the MCU Nios as additional

functions.

Thus the implementation of memory self-testing based on

pseudo-ring methods can be implemented on a few lines of the

code which saves time for project development.

V. CONCLUSIONS

In this paper we considered FPGA of the Altera and the

software-generated MCU based on Nios processor.

Requirement of an additional MCU in modern projects on the

FPGA leads to increasing of the size and cost of the device.

Using of the ‘software’ MCU based on FPGA resources

avoids these costs. As shown in the paper ‘software’ MCU

took 17% of the logical elements and 65% of the FPGA

EP4CE22 memory which is quite acceptable if a project is

implementing with using logical part of this FPGA. Also the

paper presents the algorithm and code of programs for MCU

based on the Nios processor. This algorithm is based on

pseudo-ring methods of the memory self-testing and allows

detecting any SAFs whose frequency of occurrence is usually

not less than 50%.

REFERENCES

[1] Powell, T.J., Wu-Tung Cheng, Rayhawk, J., Samman, O.,

Policke, P., Lai, S., Bist for deep submicron asic memories with

high performance application, Texas Instruments Inc., IEEE Int.

Test Conf., 2003, pp. 386-392.

[2] S. Grițcov, A. Ghincul, Gh. Bodean „Autotestarea pseudoinelară

a microcontrolerelor nanosatelitului SATUM”, ICTEI, Chișinău,

mai 2012, p. 260-267.

[3] B. F. Dutton, Ch. E. Stroud, Soft Core Embedded Processor

Based Built-In Self-Test of FPGAs. Defect and Fault Tolerance

in VLSI Systems, 7-9 Oct. 2009, p. 9.

[4] J. Sunwoo, Ch. Stroud, Built-In Self-Test of Configurable Cores

in SoCs Using Embedded Processor Dynamic Reconfiguration,

Proc. Int. System-on-Chip Design Conf., October 2005, pp. 174-

177.

[5] D. Bodean, Gh. Bodean, Wajeb Gharibi. Pseudo-Ring Testing

Schemes and Algorithms of RAM Built-In and Embedded Self-

Testing. 14 th IEEE Symposium on Design and Diagnostics of

Electronic Circuits and Systems, Cottbus, Germany, April 13-

15, 2011, p. 4.

[6] FPGA with embedded processor, 17.03.2018,

https://www.altera.com/products/boards_and_kits/embedded-

processors-development-kits-and-cards.html.

[7] Cyclone series of the FPGA, 17.03.2018,

https://www.altera.com/products/fpga/cyclone-series/cyclone-

iv/overview.html.

[8] G. Bodean, “PRT: Pseudo-Ring Testing – A Method for

SelfTesting RAM”, IEEE-TTTC Int. Conf. On Automation,

Quality and Testing, Robotics: AQTR 2002 (THETA 13), Tome

1, Cluj-Napoca, Romania, May 2002, pp. 295-300.

[9] Grițcov S., STRUCTURE CHART OF PSEUDO-RING

TESTING AND EVALUATION OF ITS ALGORITHMIC

AND HARDWARE COMPLEXITY, ICTEI-2015, Chisinău,

pp. 77-78.

[10] S. Yarmolik, A. Zankovici, A. Ivaniuk. Маршевые тесты для

самотестирования ОЗУ. Minsk: BSUIR, 2009, p. 270.

[11] S. Griţcov, Π-ТЕСТИРОВАНИЕ С ПРИМЕНЕНИЕМ LFSR

НА ОСНОВЕ ПРИВОДИМЫХ ПОЛИНОМОВ, ICTEI-2015,

Chisinau, pp. 130-131.

331

