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INTRODUCTION 

 
 Stability of solutions in linear elasticity has 
been considered in [3]. Sufficient stability 
conditions for the solution of linear dynamic 
viscoelasticity and in linear dynamic micropolar 
viscoelasticity are presented in [4] and [5]. 
 We are dealing here with the stability of 
the equilibrium solution of homogeneous mixed 
initial boundary-value problem. 
 
 
1. PRELIMINARY CONSIDERATIONS 
 
 Throughout this paper, we employ a 
rectangular coordinate system xK and the indicial 
notation. Consider an elastic medium with 
microstructure occupying the domain ( ) of the 
three-dimensional. Euclidian space,   whose 
boundary is ( ), in the time [0, T], 0 T . The 
basic equations in the linear theory of these bodies 
are [1]: 
- the equations of motion: 
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in x]0, T[, for any fixed T; 
 
- the constitutive law: 
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- the cinematic relations: 
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In the above equations, we have used the following 
notation: u i – components of the displacement 
vector; ψij – components of the microdisplacement 
tensor; εij, γij, ijk – kinematic characteristics of the 
strain; Fi – components of the body force;  Lij – 
components of body microforce; ij – components of 
the classical stress tensor; σij – components of the 
relative stress tensor; τijk – components of the couple-
stress tensor; ρ(x), Iij(x), aijlk(x), bijkl(x), cijkmnl(x), 
gijkl(x),  fijkmn(x), dijkmn(x) , characteristic functions of 
the material, the comma denotes partial 
differentiations with respect to the space variables xi,  
a dot denotes partial derivation with respect to time. 

We assume that the characteristic functions 
of the material are bounded and measurable 
functions in ( ) ( ) ( )      , and satisfy: 
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for any tensor ξ ( )ij , I  - being a constant > 0, and:  
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 To the system of field equations, we add the 
initial conditions: 
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x ( )  and the homogeneous boundary 
conditions: 
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where ai, bi, cij, dij are prescribed functions, ni are 
components of the unit outward normal to  

u t( ) and ( ),( ),( ),( )            denote subset 

of such that: 
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             Let 0 ( )C  be the vector functions with 

compact support in ( ) and components of 

( )C  . 
 Let H0, H+ be the Hilbert spaces obtained 

by completion of 0 ( )C   under the 

norms 0// . // , // . //      induced by inner products 

 

0 i i jk jkH

i , j i , j ij ,k ij ,kH

(u,v) ( )d ,u v

(u,v) ( )d ,u v





 

 


    

    
 

 
respectively, and let H- be the completion of 

0 ( )C   by means of the norm: 
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 We introduce the notation: 
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2. STABILITY ANALYSIS 
 
 The null solution is stable under perturbation 

i iju , satisfying (1) – (7) if for any 0  there 

exists a   such that [3]: 
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implies that: 
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where Ω(t) denotes integration over the volume of 
the body at time t, while Q is an  appropriately 
chosen positive functional of the initial data which 
tends to zero as the initial data tend to zero. Its 
precise   form   will be specified later. We say that a 
solution is unstable when it is not stable. 
 
Theorem 2.1. In condition (11) the null solution is 
stable for Fi = 0, Lij = 0. 
Proof. Consider the functions G(t) defined  by: 
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We have: 
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From (15) and (4) we obtain: 
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 Applying the divergence theorem and 
taking into account (1), (7), from (18), we have: 
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From (19) and (9), we get: 
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Since E(t) defined by (9) is time-independent  (i.e. 
E(0) = E(t)), from (19) we obtain: 
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 Taking into account (21), (17) we use 
Schwarz’s inequality to obtain: 
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provided Q is chosen to satisfy Q ≥ 2E(0). 
   Thus (16) is established. 
   From (16) there results the convexity on G(t) on 
[0, T]. 
 From the convexity of G(t), it immediately 
follows that: 
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Since all term on the right of (24) remain 

bounded, it follows that for 0≤t<T arbitrarily small 

values of F(0) + Q imply  arbitrarily small values of 
F(t) + Q. 
 This concludes the proof of the theorem. 
  
Theorem 2.2. The equilibrium solution of the linear 
dynamic theory of elastic media with microstructure 
is uniformly Liapunov stable with respect to the 
measures 
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or in respect to the measures: 
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Proof.  We have  

 
E(t)  = E(0) , for t >0.                                   (27) 

 
Using relation (4), (11), we get 
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If we introduce the notation 
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We obtain: 
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   Now, from (29) and (30), we obtain the 
main inequality: 
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This concludes the proof of the theorem. 
 
       Corollary 2.2. Using Friedrichs’s inequality 
[2, pp.41] 
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 From (31) and (33), we have 
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with m1 = min {1, c1}.  That is, the equilibrium 
solution is  stable with respect to the measures 
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