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INTRODUCTION 
  

A natural modeling framework for many 
complex systems, such as communication or 
computer systems and networks, is provided 
through discrete event systems and, in particular, 
generalized stochastic Petri nets (GSPN) models 
[3]. However, factors such as huge traffic volumes, 
increasingly complex operating rules, and 
performance requirements make such models highly 
impractical. From an analytical standpoint, 
traditional models from classical queuing theory fail 
to capture new features such as complicated traffic 
source behavior or blocking phenomena. An 
alternative modeling paradigm for the purpose of 
analysis and simulation is based on Stochastic Fluid 
Models (SFM). The SFM paradigm allows the 
aggregation of multiple events into a single event 
associated with a “significant change” in the system 
dynamics. 

Among the formalisms of SFM that are used, 
the fluid stochastic Petri nets (FSPN) [9] and hybrid 
stochastic Petri nets (HSPN) [1, 8] are popular. To 
make design issues and analysis procedures more 
transparent with negative-continuous values, we 
tried to deviate as little as possible from the 
concepts and the nets of FSPN and HSPN. Thus, we 
propose our extension of differential Petri nets 
(GDPN) [5], which we call Generalized Differential 
Stochastic Petri Net (GDSPN), and that is able to 
represent the behavior of computing processes in a 
common model. The features of GDSPN accept the 
negative-continuous place capacity, negative real 
values for continuous place marking and token-
dependent arc cardinalities that permit to generalize 
the concept of GDPN, FSPN and HSPN. 
 
 

1. GENERALIZED DIFFERENTIAL 
STOCHASTIC PETRI NETS 

 
The problem of state space explosion has 

challenged numerical solution of Markovian models 
for a generation. In this paper we propose a means 
of avoiding this problem for large scale models of 

repeated components, represented in GSPN. By 
adopting a continuous approximation of the model 
behavior we are able to analyze systems of 
arbitrarily large scale. However, work is 
progressing on relaxing these assumptions.  

Let +IN  and IR be the sets of discrete natural 
and real numbers, respectively. 

Definition 1. A Generalized differential Petri 
net (GDPN) is a 10-tuple ΓH =<P, T, Pre, Post, 
Test, Inh, Kp , Kb, G, Pri >, where:  

•P is the finite set of places partitioned into a 
set of discrete places },,{ 1 dnd ppP = , || dd Pn = , 
and a set of continuous places },,{ 1 cnc bbP = , 

|| cc Pn = , cd PPP ∪=  , ∅=∩ cd PP . The discrete 
places may contain a natural number of tokens, 
while the marking of a continuous place is a real 
number (fluid level). In the graphical 
representation, a discrete place is drawn as a single 
circle while a continuous place is drawn with two 
concentric circles; 

•  T is a finite set of transitions, that can be 
partitioned into a set },,{ 1 dkd ttT = , || dd Tk =  of 
discrete transitions and a set },,{ 1 ckc uuT = , 

|| cc Tk =  of continuous transitions, cd TTT ∪= , 
∅=∩ cd TT . A transition dj Tt ∈  is drawn as a 

black bar; a continuous transition dl Tu ∈ is drawn 
as an empty rectangle.  

•  Pre, Test and )(: PBagTPInh →×  
respectively, are forward flow, test and inhibition 
functions. )(PBag  are discrete or real-valued 
multisets functions over P. The backward flow 
function in the multisets of P 
is )(: PBagPTPost →× .  These functions define 
the set of arcs A and describe the marking-
dependent cardinality of arcs connecting transitions 
with places and vice-versa. Also, the A set is 
partitioned into subsets: 

A = Ad∪  Ac∪  Ah∪  At∪  As, 
Ad∩  Ac∩  Ah∩  At∩  As=∅ . 

The subset Ad and As contains respectively 
the discrete normal and continuous normal set 
arcs which can be seen as a function: 
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Ad: +→××∪× INPBagPTTP dddd )())()(( , and   
A s: IRPBagPTTP cddc →××∪× )())()(( . 
The arcs of Ad and As, are drawn as single arrows. 
The subset of inhibitory and test arcs is Ah, 
At: +→×× INPBagTP )()(  or that of continuous 
inhibitory and test arcs is Ah, 
At: IRPBagTPc →×× )()( . These arcs are 
directed from a place to any kind to a transition of 
any kind. The inhibitory arcs are drawn with a 
small circle at the end and test arcs are drawn as 
dotted single arrows. It does not consume the 
content of the source place. The subset Ac defines 
the continuous flow arcs Ac: 

IRPBagPTTP cccc →××∪× )())()(( , and these 
arcs are drawn as double arrows to suggest a pipe. 
The arc of a net is drawn if the cardinality is not 
zero and it is labeled to the arc with a default value 
being 1; 

•  }{: ∞∪→ +INPK dp  is the capacity-function 

of discrete places and for each di Pp ∈  this is 

represented by the maximum capacity max
ipK , 

+∞<< max0
ipK ,  which can contain an natural 

number of tokens. By default, the →max
ipK ∞+ , 

and it has no blocking effect;  
• }{: ∞∪→ IRPK Cb  is the capacity-function 

of continuous places and  for each ci Pb ∈ it 

describes the fluid lower bounds min
ix  and upper 

bounds max
ix  of the fluid, so that 

min
ix<∞− +∞<< max

ix . By default, min
ix = 0 and 

→max
ix ∞+ , and it has no blocking effect;  

• →× )(: PBagTG {true, false} is the guard 
function defined for each transition. For t∈T a guard 
function g(t,M) will be evaluated in each marking 
M, and if it evaluates to true, the transition may be 
enabled, otherwise t is disabled (by default it is 
true);  

•  Pri: +→× INPBagT )(   defines the priority 
functions for the firing of each transition. By default 
it is 0. The enabling of a transition with higher 
priority disables all the lower priority transitions.                           

           The structure of a GDPN is static. The 
dynamics of a net structure is specified by defining 
its initial marking and its marking evolution rule. 

Definition 2. A system stochastic timed marked 
GDPN net (GDSPN) is a pair NH = <N, M0 >, 
where N = < ΓH , Λ , W, V > is a system timed  
stochastic timed GDPN structure (see Definition 1) 

with the respective attributes of timed transitions 
and M0 is the initial marking of the net so that:   

•  The set of discrete transitions dT also is 
partitioned into two subsets τTTTd ∪= 0 , 

∅=∩ τTT0  so that: 0T  is a set of immediate 
discrete transitions and τT  is a set of timed discrete 
transitions, so that, 0Tt j ∈∀ and τTtk ∈∀ , 

Pri( jt )>Pri( kt ). The immediate transitions are 
drawn as a black thin bar and timed transitions are 
drawn as a black rectangle;  

•  The current marking (state) value of a net 
depends on the kind of place, and it is described by 
a pair of vector-columns M=(m, x), where m: 

+→ INPd  and  x: IRPc →  are the marking 
functions of respective type of places. The discrete 
marking m ),0,( diiii Ppmpm ∈∀≥=  with ii pm  

describe the number )( ii pm m= of tokens in 
discrete place ip , and it is represented by black 
dots. The continuous marking x 
= ),,( maxmin

ckkkkkk Pbxxxbx ∈∀≤≤  with kkbx  

describe the fluid level )( kk bx x=  in continuous 

place kb  and it is a real number, also allowed to 
take negative real value.  The initial marking of net 
is M0 = (m0, x0). Vectors m0 and x0 give the initial 
marking of discrete places and of continuous places, 
respectively;  

• +→×Λ IRPBagT )(: τ  is the rate function 
that maps timed discrete transition onto real 
nonnegative numbers +IR . It can be marking 
dependent. The firing rate jλ (M) define the 
parameter of negative exponential distribution 
governing it firing duration for each timed discrete 
transition of τTt j ∈ . 

•   +→× IRPBagTW )(: 0  is the weight  
function  of immediate discrete transitions 0Ttk ∈ , 
and this type of transitions is drawn with a black 
thin bar and has a zero constant firing time.  

•  IRPBagTV c →× )(:  is the marking 
dependent fluid rate function of timed continuous 
transitions cj Tu ∈ . If ju  is enabled in tangible 

marking M it fires with rate jV (M), so that it 
continuously changes the fluid level of continuous 
place ck Pb ∈ .                                                                               
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The role of the previous set of arcs and 
functions will be clarified by providing the enabling 
and firing rules. Let us denote by mi the i-th 
component of the vector m, i.e., the number of 
tokens in discrete place pi when the marking is m, 
(and xk denote the k-th component of the vector x, 
i.e. the fluid level in continuous place pk).                                                                                                                

Figure 1 summarizes the graphical represent-
tation of all the NH primitives.  

 
  

                                                                           
  

 
 

 
 

 
 
 
 
 
 
 
 

Let T(M) be the set of enabled transitions in 
current marking M . We say that a discrete 
transition dj Tt ∈ ( M) is enabled in current marking 
M  if the following logic expression (enabling 
condition )( jd tec ) is verified: 
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The transition dj Tt ∈ (M) fires if no other 
transition dk Tt ∈ (M) with higher priority is enabled. 
If an immediate discrete transition is enabled in 
current marking M = (m, x), it is vanishing. 
Otherwise, the marking is tangible and any timed 
discrete transition is enabled in it [3, 5]. If several 
enabled immediate discrete transition 0Tt j ∈ (M) 

for ij pt •∈ are scheduled to fires at the same time in 

vanishing marking M, with the respective weight 
speeds, jw (M), the jq (M)= jw (M)/ 

∑ •∈ ))&(( 0
,(

il pMTt ltw M ) is the probability that 

enabled immediate transition 0Tt j ∈  can   fires.  
 Also, we say that a continuous transition 

cj Tu ∈ (M ) is enabled and continuously fires in 
current marking M  if the following logic expression 
(the enabling condition )( jc uec ) is verified: 
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and no transition with higher priority is enabled.  
An immediate discrete transition jt  enabled in 

marking M = (m, x) yields a new vanishing marking 
M ’= (m’, x). We can write (m, x) [tj >(m’, x). If the 
marking M = (m, x) is tangible, fluid could 
continuously flow through the flow arcs Ac of 
enabled continuous transitions into or out of fluid 
places. As a consequence, a transition tc is enabled 
at M  if for every ,ub •∈   x(b)>0, and its enabling 
degree is: enab(u , M )=

ub •∈
min {x(b)/Pre(u, b)}. 

Upon firing, the discrete (continuous) transi-
tion removes a specified number (quantity) of 
tokens (fluid) for each discrete (fluid) input place, 
and deposits a specified number (quantity) of tokens 
(fluid) for each discrete (fluid) output place. The 
levels of fluid places can change the 
enabling/disabling of transitions.  

We allow the firing rates and the enabling 
functions of the timed discrete transitions, the firing 
speeds and enabling functions of the timed 
continuous transitions, and arc cardinalities to be 
dependent on the current state of the NH, as defined 
by the current marking M. 
 
 

4. DYNAMIC REWRITING GDSPN 
 

In this section we introduce the model of 
descriptive dynamic net rewriting systems.  

Let YX ρ be a binary relation. The domain of ρ  
is the Dom( ρ ) = Yρ and the codomain of ρ  is the 
Cod(ρ ) = ρX . Also, let A= < Pre, Post, Test, Inh > 
be a set of arcs belonging to net NH  N = < ΓH , 

Figure 1. Graphical representation  
of all the NH primitives. 
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  Figure 2. Discrete rewriting primitives of .RH  

Λ , W, V > , ΓH = < P, T, Pre, Post, Test, Inh, Kp , 
Kb, G, Pri > (see Definition 2). 

 Definition 3: A dynamic rewriting GDPN is a 
system =<RH N, >MGR r ,,, φ , where:  

•    N = < ΓH , Λ , W, V > and }...,,{ 1 krrR =   
is a finite set of discrete rewriting rules (DR) about 
the run-time structural modification of a net, so that 

∅=∩∩ RTP . In the graphical representation, the 
DR rule is drawn as two embedded empty 
rectangles; 

•  },{: RTE D→φ is a function which 
indicates for every rewriting rule the type of event 
that can occur and RTE D ∪= denote the set of 
events of the net; 

•  },{)(: falsetruePBagEG →×  is the 
event rule guard function associated with Ee∈ , 
and →× )(: PBagRGr {true, false} is the rewriting 
rule guard function defined for each rule of Rr∈ , 
respectively. For Ee∈∀ , the function GMge ∈)(  
and rr GMg ∈)(  will be evaluated in each marking 
and if they are evaluated to true, the event e may be 
enabled, otherwise it is disabled. The default value 
of GMge ∈)(  and rr GMg ∈)( is true in current 
marking M . 

Let >=< MRHRN ,  be represented by the 
descriptive expression DERГ and DERN, respectively 
[8]. A dynamic rewriting structure modifying rule 

Rr ∈  of RN is a map WL DEDEr : , where the 
codomain of the rewriting operator is a fixed 
descriptive expression LDE of a subnet LRN  of 
current net RN, where RNRNL ⊆  with PPL ⊆ , 

EEL ⊆ and the set of arcs AAL ⊆ , and the domain 
of the is a descriptive expression WDE of a new 

WRN  subnet with PPW ⊆ , EEW ⊆  and set of arcs 

WA . The  rewriting operator represents the 
binary operation which produces a structure change 
in the DERN and the net RN by replacing (rewriting) 
the fixed current LDE of the subnet LRN  
( LDE and LRN are dissolved) with the new WDE of 
the subnet WRN , now belonging to the new 
modified resulting 'RNDE of the net 

WL RNRNNRNR ∪=′ )\(  with WL PPPP ∪=′ )\( , 

WL EEEE ∪=′ )\( , and the set of WL AAAA ∪=′ )\( , 
where the meaning of \ (and∪ ) is operation of 
removing  (adding) LRN from ( WRN  to) the net RN. 
In this new net NR ′ , obtained by execution (firing) 
of enabled rewriting rule Rr∈ , the places and 
events with the same attributes which belong to 

NR ′are fused. By default, the rewriting rules 
∅LDEr :  or WDEr ∅:  describe the rewriting 

rule holding the )\( LRNRNNR =′  or 
)( WRNRNNR ∪=′ .  

A state configuration of a net RN is a pair 
( sR ,Γ ), where ΓR is the current structure of net RH 
together with a current state )( )(β, MMs = . The 
( 00 , sRΓ ) with PP ⊆0 , EE ⊆0  and state 0s  is 
called the initial  state configuration of a net RN.   

Figure 2 summarizes the graphical represent-
tation of RH discrete rewriting primitives.  

 
 
 
 
 
 
 
 
 
 
 
 

Enabling and Firing of Events. The enabling of 
events depends on the of the event je  is enabled in 
current marking M if marking of all places. We say 
that a transition Dj Tt ∈  the enabling condition 

),( Mtec jd  is described in [7] and is verified. 

The discrete rewriting rule Rrj ∈ , that changes 
the structure of RN, is enabled in current marking M 
if the )( jd eec  and the )),( Mrg je are verified. 

Let )(MTD  and )(MR , ∅=∩ )()( MRMTD , be 
the sets of enabled discrete transitions and enabled 
rewriting rule in current marking M, respectively. 
We denote the set of enabled events in a current 
marking M  by )()()( MRMTME D ∪= .  

The event )(MEej ∈ fires if no other event 
)(MEek ∈ with higher priority is enabled. Hence, for 

each je  if ))),(()()(( FalseMegrt jejjjj =∧=∨= φφ  
then the firing of transition )(MTt Dj ∈  or rewriting 
rule )(MRrj ∈  changes only the current marking: 

),(),( sRsR je ′⎯→⎯ ΓΓ ΓΓ RR =⇔ ( and in ΓR  
the MeM j ′>[ ). Also, for je  event if  

))),(()(( TrueMrgr jrjj =∧=φ  then the event je occurs 
to firing of rewriting rule jr  and it changes the 
configuration and marking of the current net in the 
following way:  
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),(),( sRsR jr ′Γ′⎯→⎯Γ , MrM j ′>[ . 
The accessible state graph of a 

>Γ<= MRRN ,  net is the labeled directed graph 
whose nodes are the states and whose arcs which 
are labeled with events or rewriting rules of RN are 
of two kinds: 

a) firing of an enabled )(MEe j ∈  event 
determines an arc from the state ),( sRΓ  to the state 
( sR ′Γ, ) which is labeled with event je  when this 
event can fire in the net configuration ΓR  at 
marking M and leads to a new state:  

⇔′′⎯→⎯′ ),(),(: sRsRs je ΓΓ  
( ΓΓ ′=RR  and MeM j ′>[  in ΓR ); 

b) change configuration: arcs from state 
),( sRΓ  to state ( sR ′′,Γ ) labelled with the rewriting 

rule Rrj ∈ , so that :jr ( LL MR ,Γ ) ( WW MR ,Γ ) 
which represent the change configuration of current 
RN net: ),(),( sRsR jr ′′⎯→⎯ ΓΓ  with  MrM j ′>[ . 

 
 

3. ANALYTICAL DESCRIPTION  
   OF SGDPN MODELS 

 
For the analysis of an SGDPN the underlying 

stochastic process must be defined. The node of the   
discrete part reachability graph consists of all 
discrete markings supplemented by vector of 
random variable for the fluid levels. It gives rise to 
a stochastic process, which is a Markov process in 
continuous time with mixed state space [4, 6]. The 
bounded, live and reversible GSDPN are isomor-
phic to continuous-time hybrid Markov chains 
(CHMC) due to the memory less property of 
exponential distribution.  

We denote the set of all markings (or the 
partially discrete and partially continuous state 
space) of the net by cd PP IRINS ×= + . In the 

following we denote by dS  and cS  the discrete and 
the continuous component of the state space, 
respectively, so that cd SSS ∪= , ∅=∩ cd SS .  

The current marking M = (m, x) of NH evolves 
in time. We denote the time byτ , and M (τ ) the 
current marking at time τ of the marking process 

( )S τ = { m(τ ),  x(τ ), τ >0 } of NH net.  
In the NH, the instantaneous fluid speed 

(dynamic balance) k,iυ (M) that change of fluid 
level in continuous place ci Pb ∈  in current marking 
M =( mk, x),  mk dS∈ , x cS∈  is given by: k,iυ (M) 

= +
k,iυ (M) - −

k,iυ (M), cni ,1= , || cc Pn = , where for 

any given cnk Tuu ∈, (M), the +
iυ (M) is an input 

instantaneous fluid speed of continuous place 

ci Pb ∈  and −
iυ (M) is an output instantaneous fluid 

speed of this place: 
+

k,iυ (M) = kbu
V

ik
∑ •∈

[ (M) ),( ik buPre⋅ ],   
−

k,iυ (M) = nbu
V

in
∑ •∈

[ (M) ),( in buPost⋅ ]. 

Live and bounded HSPN are isomorphic to 
continuous-time hybrid Markov chain (CHMC) due 
to the memory less properly of exponential 
distribution [3].  

Let Sd be the discrete set of state space of 
CHMC and let D ( x)= ||,...,0,)],([ , djl Sjixd =  
be the dynamic matrix of transition rates derived 
from the rate function of discrete transitions of 
discrete part GDSPN  [1, 8]. 

The dynamic balances iυ (M) that changes 
levels for each continuous place ib  in discrete 
marking mk dS∈  are collected in the diagonal 
matrice: 

(kυ x ) 0,( idiag υ= ( x ),…, ki,υ ( x ) ),     

.||,...,1 cc Pni ==  
The 3-tuple (m(τ ), x(τ ); (kυ x )) describes the 

state of CHMC chain. The transient probability of 
being in discrete state mk with fluid levels in an 
infinitesimal environment around ix , for all 
continuous places ci Pb ∈  are called the fluid 
density probability and are denoted by kf (x,τ ). 

Let ii hx −=min and ii hx +=max . Let also (−kρ  x,τ ) or 

(+kρ  x,τ ) be a probability mass if x(τ ) has at least 

one component equal to ii hx −=  or ii hx += , 
respectively.  

Using the approach described in [8, 9] we have 
derived the Chapman-Kolmogorov forward 
equations that are in the following: 

• for internal fluid levels values 
hxh ii

+− <<∀  of ci Pb ∈ : 

 (kfτ∂
∂

x,τ ) ((
1

k

n

i i

f
x

c

∑
= ∂

∂
+ x,τ ) (,kiυ⋅ x )) =   

               ((
||

0
,∑

=

dS

l
kld x,τ ) (lf⋅  x,τ )),            (1) 

ddd SNNk == ,,...,0 .         
For the boundary conditions two different cases 

arise, depending on the direction of the fluid flow: 
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• for the lower boundary fluid levels values 

ii hx −= of ci Pb ∈ :  

       (−kρ  x,τ )=0  if ∧=− )( ii hx ( (,kiυ⋅ x )>0),  and                                                                

τ∂
∂ (−kρ  x,τ )+ ((

:
∑

−=∀ ii hxi
kf x,τ ) (| ,kiυ⋅ x )|) 

+ ((
:
∑

−>∀ ∂
∂

ii hxi
k

i

f
x

x,τ ) (,kiυ⋅ x )) = 

     ((
||

0
,∑

=

dS

l
kld x,τ ) (−⋅ lρ  x,τ )), if ∧=− )( ii hx  

       ( (,kiυ x ) <0), ci Pb ∈∀ , ∀  mk dS∈ ;       (2) 
• for the upper boundary fluid levels values 

ii hx += of ci Pb ∈ : (+kρ x,τ )=0 if    

  ∧=+ )( ii hx ( (,kiυ⋅ x)<0),  and           (3)                                                         

τ∂
∂ (−kρ  x,τ )+ ((

:
∑

+=∀ ii hxi
kf x,τ ) (,kiυ⋅ x )) 

+ ∑
+− <<∀ ∂

∂

iii hxhk
k

i

f
x:

(( x,τ ) (,kiυ⋅  x,τ )) = 

((
||

0
,∑

=

dS

l
kld x,τ ) (+⋅ lρ  x,τ )),       if 

∧=+ )( ii hx ( (,kiυ⋅ x )>0), ci Pb ∈∀ , ∀  mk dS∈  
Assuming the system converges to a stationary 

solution of equations (1), (2) and (3), the stationary 
fluid density function and fluid mass function exists 

(kf x )= (lim kf∞→τ
x,τ ), −

kρ (x )= −

∞→ kρτ
lim (x,τ ) and 

+
kρ (x)= +

∞→ kρτ
lim (x,τ )  only if the system is stable. 

Stability conditions of GDSPN are still a research 
topic. 

For these equation systems the steady-state 
distribution exists when the underlying of GDSPN 
discrete part is bounded, life, reinitialized and the 
following relations are verified: 
   

∑
∈∀∞→∀ +

dk
i S

kh m

((lim π x) (,kiυ⋅ x))<0, ci Pb ∈∀ ,      (4)  

 
where (kπ x) is the stationary probability of 
discrete marking mk dS∈ determined by the 
underlying continuous-time Markov chain (CTMC) 
of GDSPN discrete part [4, 10]. These relations are 
obtained by solving the following linear system 
equations that describe the behavior of CTMC: 

 
(π x) (D⋅ x)=0,  ∑

∈∀ dk S
k

m

(π x)=1.        (5) 

Over the hxh ii
+− <<  internal fluid levels 

value intervals the stationary distribution of (kf x), 

ddd SNNk == ,,...,0 , satisfies: 

      ((
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0
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       hxh ii
+− <<∀ .                              (6) 

For the boundary conditions, depending on the 
direction of the fluid flow [3, 6]: 
• for the lower boundary fluid levels values  

      ii hx −= of ci Pb ∈ :                                        

(−kρ  x)=0  if ∧=− )( ii hx ( (,kiυ⋅ x )>0),  and                                 
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dS

l
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if ∧=− )( ii hx ( (kυ x )<0), ci Pb ∈∀ , ∀  mk dS∈ ; 
• for the upper boundary fluid levels values 

ii hx += of ci Pb ∈ :  

          (+kρ x)=0  if ∧=+ )( ii hx ( (,kiυ x )<0),  and                       
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 if ∧=+ )( ii hx ( (,kiυ⋅ x )>0), ci Pb ∈∀ , ∀  mk dS∈  
The GDSPN model solution problem is in 

general not analytically tractable. The numerical 
solution algorithms proposed in [2, 6, 9] are appli-
cable only when the interactions between the 
discrete and continuous portions of the net satisfy 
fairly strong assumptions. 

To obtain the steady-state solution of the 
dynamics for the stationary fluid mass probability: 

      )()(()( xxx +− += kkk ρρρ ,)(∫
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...... 1  

of the GDSPN model has been computed by using 
an extension of the finite difference solution 
technique proposed in [6, 9], which confirms to the 
boundary conditions and satisfies the normalization 
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            Figure 5. HMC1 of NHsys. 

condition at the same time. These are quite complex 
and hard to solve.  

Hence, discrete-event simulation becomes an 
important alternative avenue to study the behavior 
and the solution of GDSPNs models under some 
restrictions. However, due to the mixed nature of 
the state space, with discrete and continuous 
components and arbitrary interactions between 
them, simulation also poses several challenges that 
we address.  In [3] are characterized the types of 
these interactions as belonging to one of the several 
restricted classes of models and are  proposed a 
better suited, and faster, simulation algorithms can 
be employed for the solution and to predict the 
behavior. 

Thus, for visual simulation and analysis of 
GDSPNs we have elaborated the VHPNtool [7]. 

Continuous performance measures can be 
classified as fluid state measures and flow 
measures. Fluid state measures give the probability 
of a condition connected to the fluid levels in the 
net, while flow measures can be considered as the 
continuous counterpart of discrete throughput 
measures. 

In order to show the applicability of GDSPNs we 
consider a pipe-line hybrid computing system 
consisting of three processing elements PEj, j=1,2,3 
(see figure 3). Each element PEj can be in two local 
states }1,0{∈jα . In the active state 1=jα , the 
element PEj with speed Vj will, in continuous mode, 
decrease the level xk of buffer bk , k = 4-j and in the 
same time it will in continuous mode increase the 
level xj of buffer bj, j=1, 2, 3. In the passive 
state 0=jα   it will not change them anymore.  The 
time sojourn of each element PEj in the states 

1=jα  or 0=jα  are negative exponentially 

distributed random variables with rates jλ or jμ . 
 
 
 
 
 
 
 
Figure 3. Translation of DEsys in NHsys. 

 
The blocking effect of PEj in 1=jα  is 

represented by capacity jb hK
j
= of buffer bj if this is 

full. Further, we will note x1=x, x2=y and x3=z. The 
net NHsys has four P-invariants that cover all places: 
m(pj) + m(pj+3)=1,  j=1,2,3 for discrete places and x 
+ y + z = h for continuous places. For the initial 
marking m(pj)=1, x0=y0=0, z0= h3=h1+h2, and the 

current state of NH1 can be described by 7-tuple 
(

yxxy β,β;,321 ααα ), where xβ  and yβ  are 
respectively dynamic balances of buffers b1 and b2.  

The analytical analysis of underlying hybrid 
continuous time Markov Chain HMC of this NHsys 
model in general case is very difficult. For this 
analysis is necessary to use the special tool. 

Here we give a simplified case for 032 ==λλ , 
where the elements PE2 and PE3 always will be in 
active state 132 ==αα  and in this way, the element 
PE2 (respective PE3) with the speed V2 (respective 
V3), will transfer the content of buffer b1 (respective 
b2) in buffer b2 (respective b3).  

The behavior of NHsys depends on the ratio 
between speeds Vj. For V1 > V2 > V3 the chain 
HMC1, with the respective internal and boundary 
states, in considerate case, is represented in figure 5, 
where the discrete marking is }1,0{∈im  because the 
element PEi can be or in passive or in active state.  

 

 

 

 

 

 

 

Let fi(x, y) denote the steady-state fluid density of 
CHMC1 in current marking (mi, xy), i=0,1. For each 
internal state (mi, xy; vx, vy), 0<x<h1 and 0<y<h2 of 
the chain CHMC1 the fi(x, y) obeys the following 
system of partial differential equations (PDE): 
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To write the boundary equation directly 

from graph of chain HMC1 we introduce the 
notation: )0(iπ  or )( 1hiπ , which are the probabilities 
of boundary states of buffer b1 for x=0 or x=h1, but 
Q(0) or Q(h2) of buffer b2 for y=0 or y=h2, 
respectively. 

For each state with 12 VV=ω  we can write 
the steady-state probabilities from the boundary 
equations:        ;)()( 103111 hVh ϕπωλ ⋅=⋅   

       ;)()()( 1132111 hVVh ϕπωλ ⋅−=⋅  
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;)()()( 2132211 hVVhQ ϕωλ ⋅−=⋅  
;)0()()0( 12101 ϕπμ ⋅−=⋅ VV  

);0()0( 1301 ψμ ⋅=⋅ VQ  
.)()0()()0( 20032001 hQVhQ ϕψμ ⋅=⋅⋅  

Solutions of these equation systems permit 
us to determine the distribution of steady-state 
probability and the performance indicators of 
system, i.e. the average levels x̂ and ŷ in 
buffers b1 and b2 are: 

+−++⋅= 11111113 )1()1([(ˆ bhahVCx γλμ           
2
11 )1( γa++ , 112

11
heb γγ=  

[ ]DaVVVVVVhCy +−+−−⋅= ))()()(((ˆ 123232212 μλ , 
where: 2

22
2
2222 )1())1)(1( 22 γγγ γ aehaD h ++−+= ,    

         12 aAa = , )( 2112111 VVV −−= λμδγ ,   
   )/( 311311 VVV −−= λμδ , )( 3231 VVVa −= ,   
         ( ) ( )3212112 VVVA −−+= λγμγ . 
The value of C is a constant obtained from the 
normalization condition, but γ2 and A are 
obtained like solution of following character-
ristic equation of system PDE :   
           ,02 =−⋅+ ρAbA  where 11 μλρ = ,   and  
          ( ) ( )( )212121 21 VVVVVVb −−−+= ρ . 

From this characteristic equation and 
from the normalization condition, that density 
probability always is a positive value, we 
obtain the solution, A>0.  

The time redundancy is: 2/ˆˆ Vxx =τ  and 

3/ˆˆ Vyy =τ . The same considerations hold for 
system throughput. 

 
 

4. CONCLUSIONS  
 

In this paper we propose the generalized 
differential stochastic Petri nets (GDSPN) for 
performance modeling of discrete-continuous 
computing processes. The features of GDSPN 
accept the negative-continuous place capacity, 
negative real values for continuous place marking 
and marked-dependent arc cardinalities. With our 
approach, the modeling power of fluid models is 
extended to include the case with fluid-dependent 
rates. Also, we provide the set of partial differential 
equations and boundary conditions that determines 
the stationary behavior and we discuss potential 
numerical methods that evaluate the stationary 
distribution based on this description.  
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