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Abstract. Visualizing high-dimensional datasets can be challenging. While it is possible to plot data 
in two or three dimensions to reveal the data's innate structure, analogous high-dimensional 
representations are significantly less understandable. A dataset's structure must be shown to some 
extent, hence the dimension must be decreased. Principal component analysis (PCA) and linear 
discriminant analysis (LDA) were the two historically the first methods. Several nonlinear techniques 
were afterwards developed, including locally linear embedding (LLE), multi-dimensional scaling 
(MDS), isometric feature mapping (Isomap), stochastic neighborhood embedding (t-SNE), etc. In the 
current study, several nonlinear representation learning techniques are used for 
electroencephalography (EEG) data with the ultimate objective of categorizing the EEG signal. 
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 Introduction 
 Multidimensional data sets are common in current times. It may be challenging to view and 

comprehend data due to the vast number of characteristics. Applications commonly use high-
dimensional vectors as data representations (gene expression data, drug discovery data, etc.). While 
working with such data, one may run into the so-called "curse of dimensionality" (a term coined by 
Richard Bellman in 1957), which describes how high-dimensional algorithms are more difficult to 
build and frequently have running times that are exponentially related to the dimension. Many 
dimensionality reduction/representation learning techniques may be used to this issue. Traditionally, 
there are two categories that these techniques fall under (a) Linear Representation Learning (e.g., 
LDA and PCA), and (b) Nonlinear Representation Learning (e.g., LLE, MDS, Isomap, t-SNE, etc.). 
The Manifold learning hypothesis is one of the fundamental ideas behind representation learning, and 
it is discussed in more detail below. 

Multidimensional data include, for example, multichannel EEG data. In the current study, 
these data are pre-processed before being utilized for representation learning by calculating their 
algorithmic complexity (AC) over time. 
 

1. Manifold learning. Formulation of the manifold learning problem  
According to the manifold hypothesis, although datasets might be very highly dimensional 

when they are acquired, the real linkages between the data are found in much smaller dimensional 
areas (embedded in the high dimensional space). In light of this, it may be said that data analysis 
essentially looks for this lower-dimensional space (e.g., through dimensionality reduction). 

According to [1], the issue is formulated as having a manifold ℳ of dimension d  embedded 

in an m-dimensional Euclidian space ℛ𝑚, 𝑑 < 𝑚, and  ℳ =   𝑓(Ω) with a mapping 𝑓: Ω → ℛ𝑚. 
Assume we have a set of points 𝑥1, … , 𝑥𝑁 that were sampled from the manifold ℳ with noise. 

 

𝑥𝑖 = 𝑓(𝜏𝑖) + 𝜀𝑖,     𝑖 = 1, … , 𝑁,                                                        (1) 
 

where {𝜀𝑖} denotes noise, and {𝜏𝑖} and/or the mapping 𝑓(∙) are sought for outcomes from the noisy 

data {𝑥𝑖}. Generally speaking, this issue is referred to as nonlinear dimension reduction or manifold 

learning. In order to estimate the local structures around each sample point 𝑥𝑖 , a class of local 
techniques for manifold learning first estimates the local structures in question, then aligns them to 

derive estimates for {𝜏𝑖}. 
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2. Algorithmic complexity 

The estimation of algorithmic (Kolmogorov-Chaitin) complexity carried out using the Block 

Decomposition Method (BDM) from the field of algorithmic information dynamics (AID) [2] is 

credited with playing a significant role in the data processing flow in this study. The concept of 

algorithmic complexity (Kolmogorov-Chaitin or program-size) is crucial in this context [3]:  
 

𝐾𝑇(𝑠) = 𝑚𝑖𝑛{|𝑝|, 𝑇(𝑝) = 𝑠},                                                       (2)  
 

where 𝐾𝑇  is the length of the shortest program p that produces the string s when executed on a 

universal Turing machine T. 

The online algorithmic complexity calculator (OACC), which employs the BDM approach 

and is based on algorithmic probability specified by the coding theorem method (CTM), is a specific 

tool included in the AID toolkit for delivering accurate estimates to uncomputable functions [3]: 
 

𝐵𝐷𝑀 = ∑ 𝐶𝑇𝑀(𝑏𝑙𝑜𝑐𝑘𝑖) +  𝑙𝑜𝑔2(|𝑏𝑙𝑜𝑐𝑘𝑖|).                                        (3)

𝑛

𝑖=1

 

 

3. The dataset 

The data used throughout this paper include a set consisting of algorithmic complexity (AC) 

time series coming from 36 healthy human volunteers who perform an intensive mental task [4]. The 

AC is estimated on paired EEG signals obtained before and during the task. The final goal of the 

research is to investigate the possibility of classifying the EEG signals as recorded before and during 

the task using transformed (by BDM) EEG signals. The set hereinafter is named “Arithmetic test set” 
 

 
A system can automatically find the representations required for feature detection or 

classification from row data using non-linear approaches. Contrary to linear representations, which 

are supervised learning techniques, non-linear methods have two main types: (a) unsupervised (based 

on unlabeled data by examining the relationship between points in the data set), and (b) semi-

supervised, in which features are learned using unlabeled data, but input-label pairs are constructed 

from each data point, allowing learning the structure of the data through supervised methods. 

 

 

 

 

 

 

 

 
Figure 1. A scatter plot of two samples from Arithmetic test set. X-axis is time and Y-axis is for 

algorithmic complexity. The spectral color map is used. 
 

The following is the description of a number of non-linear representation learning approaches 

applied to Arithmetic test data. 
 

4.1. Locally linear embedding 

The Locally linear embedding (LLE) [5] method computes low-dimensional, neighborhood-

preserving embeddings of high-dimensional data to solve the nonlinear dimensionality reduction 

issue. A data collection of dimensions n is mapped onto a single global coordinate system of lower 

dimensionality, d, where it is believed to sit on or close to a smooth nonlinear manifold of 

dimensionality d < n. Locally linear fits are used to reconstruct the global nonlinear structure. The 
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global internal coordinates on the manifold may be obtained by linearly mapping the high-

dimensional coordinates of each neighborhood. So, by computing the locally linear patches in step 

one and the linear mapping to the coordinate system on the manifold in step two, it is possible to 

identify the nonlinear structure of the data.   

After locating the closest neighbors, a local geometry is generated for each locally linear 

patch. Linear coefficients that rebuild each data point from its neighbors define this geometry: 

min
𝑤

∑ ‖𝑥𝑖 −  ∑ 𝑤𝑖𝑗𝑥𝑁𝑖(𝑗)

𝑘

𝑗=1

‖

2

,                                                (4)

𝑛

𝑖=1

 

where k is the number of neighbors, w are weights, and 𝑁𝑖(𝑗) is the index of the jth neighbor of the ith 

point. Finally, by completing a similar job for y, estimated vectors are created in order to maintain 

the reconstruction weights.  
 

4.2.Multi-dimensional scaling 

Using knowledge of the separations between the n patterns, Multi-dimensional scaling (MDS) 

[5] tackles the issue of creating a configuration of n points in Euclidean space. If a n × n matrix D is 

symmetric, has 𝑑𝑖𝑖 = 0, and 𝑑𝑖𝑗 > 0, 𝑖 ≠ 𝑗, it is referred to as a distance or affinity matrix. Given a 

distance matrix D, the MDS searches for n data points in d dimensions with 𝑦1, … , 𝑦𝑛 such that if 

𝑑𝑖𝑗̂ signifies the Euclidean distance between yi and yj, then 𝐷̂  is identical to D. In doing so, MDS 

reduces 

min
𝑌

∑ ∑(𝑑𝑖𝑗
(𝑋)

− 𝑑𝑖𝑗
(𝑌)

)
2

,

𝑛

𝑖=1

𝑛

𝑖=1

                                                          (5) 

where 𝑑𝑖𝑗
(𝑋)

= ‖𝑥𝑖 − 𝑥𝑗‖
2

 𝑎𝑛𝑑 𝑑𝑖𝑗
(𝑌)

= ‖𝑦𝑖 − 𝑦𝑗‖
2

. 
 

4.3. Isometric mapping 

A nonlinear extension of traditional MDS is called Isometric mapping (Isomap) [5]. Similar 

to LLE, the first step can be carried out by selecting all locations within a certain radius or by 

determining the k nearest neighbors. A graph G that connects each data point to its closest neighbors 

via edges with weights 𝑑𝑋(𝑖, 𝑗) represents these neighborhood relations. Then, between each pair of 

points on the manifold ℳ, the geodesic distances 𝑑𝐺(𝑖, 𝑗) are computed. 

The data are then generated into an embedding in a d-dimensional Euclidean space Y by 

applying traditional MDS to 𝐷𝐺  in the last phase of the process. Setting the coordinates of yi to the 

top d eigenvectors of the inner-product matrix B produced by 𝐷𝐺  results in the global minimum of 

the cost function.  
 

4.4. Stochastic neighbor embedding 

t-Distributed stochastic neighbor embedding (t-SNE) [6] is suited for the simultaneous 

preservation of data, recollecting both the local and global framework of the data, in contrast to the 

techniques mentioned above. Given a collection of high-dimensional objects 𝑁 = {𝑥1, 𝑥2, … , 𝑥𝑁} and 

the function 𝑑(𝑥𝑖, 𝑥𝑗), which stands for the Euclidean distance, then 𝑑(𝑥𝑖 , 𝑥𝑗) = ‖𝑥𝑖 − 𝑥𝑗‖ . The 

conditional probabilities 𝑃𝑗|𝑖  between the comparable objects of data points 𝑥𝑖  and 𝑥𝑗  are first 

calculated via t-SNE as follows:  

𝑃𝑗|𝑖 =
exp (−‖𝑥𝑖 − 𝑥𝑗‖

2
/ 2 ∗  𝜎𝑖

2) 

∑ exp (−‖𝑥𝑖 − 𝑥𝑗‖
2

/ 2 ∗  𝜎𝑖
2)𝑘≠𝑖

 .                                              (6) 

 

For the low-dimensional collection of data 𝑦𝑖 and 𝑦𝑗 assigned to the high-dimensional set of 

data 𝑥𝑖 and 𝑥𝑗, a conditional probability 𝑞𝑗|𝑖 is determined in a similar way:  



Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei 

 

Chișinău, Republica Moldova, 5-7 aprilie 2023, Vol. II 
 

- 210 - 

𝑞𝑗|𝑖 =
𝑒𝑥𝑝 (−‖𝑦𝑖 − 𝑦𝑗‖

2
)

∑ 𝑒𝑥𝑝 (‖𝑦𝑖 − 𝑦𝑗‖
2

)
2

𝑘≠𝑖

.                                                      (7) 

 

When two sets of data are comparable, we set 𝑞𝑗|𝑖 = 0. When t-SNE is used to minimize 

Kullback-Leibler divergences between P and Q, the size of the cost function C is given by, 
 

𝐶 = 𝐾𝐿(𝑃‖𝑄) =  ∑ 𝑝𝑖𝑗 ∗  log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑖≠𝑗

.                                                 (8) 

 

4.5. Spectral clustering/embedding 

The two primary processes of Spectral embedding (SE) [7] are to first embed the data points 

in a space where clusters are more "apparent," and then to use a conventional clustering method like 

k-means. A data-independent kernel, such as the Gaussian kernel, is initially applied to each pair of 

instances to create the spectral clustering affinity matrix K: 𝐾̃𝑖𝑗 =  𝑘̃(𝑥𝑖 , 𝑥𝑗). The matrix  𝐾̃ is then 

"divisively" normalized as follows: 

𝐾𝑖𝑗 =
𝐾̃𝑖𝑗

√𝑆𝑖𝑆𝑗

 ,                                                                   (9) 

where the 𝑆𝑖 are the row sums of 𝐾̃: 

𝑆𝑖 = ∑ 𝐾̃𝑖𝑗

𝑚

𝑗=1

.                                                                  (10) 

 

After normalizing each embedding vector to have a unit norm, the first N main eigenvectors 

of K are calculated in order to produce N clusters: the rth coordinate of the ith example is 

𝑣𝑟,𝑖 √∑ 𝑣𝑙,𝑖
2𝑁

𝑙=1⁄ . 

Finally, we require a kernel that might have produced that matrix K in order to extend spectral 

clustering to out-of-sample points: 

𝑘𝑚(𝑥, 𝑦) =
1

𝑚

𝑘̃(𝑥, 𝑦)

√𝐸̂𝑥′[𝑘̃(𝑥′, 𝑦)]𝐸̂𝑦′[𝑘̃(𝑥, 𝑦′)]
.                                       (11) 

5. Results 

The figures below denote the results of applying the nonlinear representation methods 

described before on the data. Green color denotes pretest algorithmic complexity and red color 

denotes during-the-test complexity of the EEG signal. 

 

 

 

 

 

 

 

 
Figure 2. LLE on arithmetic test data; On the left is LLE and on the right is modified LLE. 
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Figure 3. MDS (on the left) and Isomap (on the right) on arithmetic test data.   

 

 

 

 

 

 

 

 
Figure 4. t-SNE (on the left) and SE (on the right) and on arithmetic test data.   

 

6. Conclusions 

Since the final goal of the research, the current work is part of, is a classification one, using 

methods that contribute to “decluttering” the data and providing more comprehensive view on them, 

is expected to translate into better classification accuracy. And the differences between Figure 1 (i.e., 

difficult to separate data points) and Figures 2 to 4 (i.e., almost no overlap present) can provide some 

explanation for a potential increase in accuracy.  

 

Acknowledgments.  

The author of this paper would like to thank for valuable guidance Mr. Nistor Grozavu, CY 

Cergy Paris University, who was the holder of the course on Deep Representation Learning 

attended by the author and Mr. Ion Fiodorov, TUM who is the supervisor of the doctoral research 

project. 

 

References 

1. ZHA, H., ZHANG, Z. Spectral Properties of the Alignment Matrices in Manifold Learning. In: 

Review of the Society for Industrial and Applied Mathematics, 51(3), 2009, pp. 545-566 

2. ZENIL, H. A Review of Methods for Estimating Algorithmic Complexity: Options, 

Challenges, and New Directions. In: Entropy 22(6), 2020, 612. doi.org/10.3390/e22060612 

3. ZENIL, H. et al. A Decomposition Method for Global Evaluation of Shannon Entropy and 

Local Estimations of Algorithmic Complexity. In: Entropy, 20(8), 2018 p. 605. 

doi:10.3390/e20080605. 

4. ZYMA, I. et al. Electroencephalograms during Mental Arithmetic Task Performance. In: 

Data, 2019, 4(1):14, doi.org/10.3390/data4010014 

5. GHODI, A. Dimensionality Reduction. A Short Tutorial. Department of Statistics and actuarial 

science, University of Waterloo, Ontario, Canada, 2006 

6. SAKIB, S. et al. Performance Evaluation of t-SNE and MDS Dimensionality Reduction 

Techniques with KNN, ENN and SVM Classifiers, 2020, arXiv:2007.13487 

7. BENGIO Y. et al. Spectral Dimensionality Reduction. In: Guyon, I., Nikravesh, M., Gunn, S., 

Zadeh, L.A. eds Feature Extraction. Studies in Fuzziness and Soft Computing, vol 207. 

Springer, Berlin, Heidelberg, 2006 https://doi.org/10.1007/978-3-540-35488-8_28  

https://doi.org/10.1007/978-3-540-35488-8_28

