Spintronic Functional Nanostructures for Artificial Neural Network

Maria Lupu¹, Nikolai Klenov², Igor Soloviev², Sergey Bakurskiy², Vladimir Boian¹, Cezar Casian Malcoci¹, Andrei Prepelita¹, Evgheni Antropov¹, Roman Morari¹, Anatolie Sidorenko^{1,2*}

¹D.GHITU Institute of Electronic Engineering and Nanotechnologies, Technical University of Moldova, Chisinau, 2028 Moldova

² M.V. Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, 119991 Russia

Energy consumption reduction becomes a crucial parameter constraining the advance of supercomputers. The non-von Neumann architectures, first of all – the Artificial Neural Networks (ANN) based on superconducting spintronic elements, seems to be the most promising solution. Superconducting ANN needs elaboration of two main elements – nonlinear one (neuron) [1] and linear connecting element (synapse) [2]. Results of our theoretical and experimental study of the proximity effect in a stack-like superconductor/ferromagnet (S/F) superlattice with Co-ferromagnetic layers of different thicknesses and coercive fields, and Nb-superconducting layers of constant thickness equal to coherence length of niobium are presented.

Superconducting spin-valves and superconducting synapse, based on layered hybrid S/F nanostructures was designed and investigated.

The layered nanostructures Nb/Co demonstrate change of the superconducting order parameter in thin s-films due to switching from the parallel to the antiparallel alignment of neighboring F-layers. We argue that such superlattices can be used as tunable kinetic inductors for ANN synapses design.

The study was financially supported by the Russian Science Foundation Grant (RSF) No. 20-79-10018. and partially by the Moldova State Program Project «Nanostructuri şi nanomateriale funcționale pentru industrie şi agricultură» no. 20.80009.5007.11.

References

1.N. Klenov, Y. Khaydukov, S. Bakurskiy, R. Morari, I. Soloviev, V. Boian, T. Keller, M. Kupriyanov, A. Sidorenko, B. Keimer, Periodic Co/Nb pseudo spin valve for cryogenic memory, Beilstein J. Nanotechnol. 10 (2019) 833–839. https://doi.org/10.3762/bjnano.10.83.

2. S.Bakurskiy, M.Kupriyanov, N.Klenov, I.Soloviev, A.Schegolev, R.Morari, Yu.Khaydukov, A.Sidorenko. Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport. Beilstein J. Nanotechnol. 2020, 11, 1336–1345. https://doi.org/10.3762/bjnano.11.118