
20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

https://doi.org/10.52326/ic-ecco.2022/KBS.06

312

Non-linguistic Thinking as an Effective Tool for

Innovation in Education

Leon Brânzan
1
, ORCID: 0000-0003-0049-6176

1
Dept. of Informatics and System Engineering, Faculty of Computers, Informatics and Microelectronics, Technical

University of Moldova, str. Studenţilor, 9/7, b. 3, MD-2045, Chișinau, Republic of Moldova, leon.brinzan@iis.utm.md,

https://fcim.utm.md/

Abstract—In higher education subjects are traditionally

taught in the form of lectures, where teachers are required

by the curriculum to cover a certain amount of content in

order to prepare their students for subsequent courses or

examinations. It has been observed that people struggle

when they are required to memorize a lot of new

information, this phenomenon is explained by the working

memory theory [1], and the negative effect is amplified

when teaching subjects like programming, with the links

between categories of information that has to be memorized

not clearly identifiable by beginners. Lecture material for

programming courses often mixes language-specific

information (keywords, syntactical rules, ready solutions),

mathematical basis for a given solution (type theory,

algorithm theory), hardware-specific limitations (computer

memory management) etc. This often has drastic

consequences for students’ success in later courses that rely

on material from previous courses [2].

This paper argues, that the process of learning is not

simply about transferring knowledge from teacher to

student. In fact, knowledge does not have to be “existing in

an objective manner” for subsequent transmission, it can

also be “built in a constructive manner by the learner" [3].

Within a traditional educational process software

engineering students find themselves in situations where text

is used to reason about other forms of text: typically code

examples are shown first, then the code’s structure and

syntax are explained. While there is intrinsic value in

reading code written by experts, reading explanations of

that code is much less effective than trying to reason about

the structure and function of a program, and various

features of a programming language. This paper will

attempt to showcase several teaching techniques that don't

utilize textual explanations (either partially or completely),

putting forward the argument that non-linguistic

presentations can be more effective in teaching, under

certain conditions. Several methods of achieving this effect

will be described, with the main goal of appealing to the

student's ability for computational thinking.

Keywords—non-linguistic learning; software engineering;

cognitive load theory; computational thinking

I. CONTENT DELIVERY

Software engineering is a multifaceted discipline.

Mastering it requires memorizing a lot of factual

information, knowledge of at least one programming

language, and learning a particular set of skills that enable

the learner to tackle complex engineering tasks.

Programming can only be learned by solving problems

specifically designed to develop these kinds of skills. This

makes efficiently teaching software engineering difficult.

The traditional way of teaching programming heavily

relies on content delivery. Subsequent memorization of

information delivered in this way requires development of

multiple neural links in the corresponding neural

networks, ergo – active interaction with a given piece of

information and deliberate dwelling on the result of that

interaction are needed [4]. Designing and writing software

is one of the most complex problems students can be

tasked with. Software itself is often on the leading edge of

any given industry’s advancement. It follows that software

engineering courses should be on the bleeding edge of

education. In actuality, the opposite is true. High-profile

courses, like Harvard University’s CS50 program, while

claiming to be designed “with the aims of making the

content of the course more widely available and

contributing to public understanding of innovative

learning”
1
, do not go too far from the traditional lecture

form in their attempts to innovate learning, only

supplementing information delivered during lectures with

various visualization techniques, and only sporadically.

They do not illustrate the relations between different

concepts presented to students from one lecture to the

next, leaving it up to students to infer those connections.

Lecture is a process of deconstructing knowledge by

the teacher, negotiating between teacher and learner, and

subsequently reconstructing it by the learner. The same

applies to learning via textbooks which inherits all of the

1
 CS50 Syllabus, Harvard College,

https://cs50.harvard.edu/college/2021/fall/syllabus/

https://doi.org/10.52326/ic-ecco.2022/KBS.06
https://cs50.harvard.edu/college/2021/fall/syllabus/

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

313

drawbacks of the lecture-form with the added detriment of

having no ability to appeal to the author for clarification.

Lectures are becoming less and less effective [5]. The

ideas and skills required to master programming cannot be

learned by listening to a lecture or by reading a book

(though they are learned about, which has its own value).

However, methods of doing it using software solutions

which take into account how the human brain actualizes

abstract concepts and processes code have existed for

decades but are rarely used in education.

This paper will provide several concrete examples of

how software enables students to learn the “spirit of

engineering and problem solving” in order to support its

main claim, that non-linguistic forms of learning can be

extremely effective, especially for disciplines like

programming.

II. TEXT AND META-TEXT

While it has been noted, that “relationship between

code and language may be ontogenetic as well as

phylogenetic”, and that “[it] is hard to imagine how code

in its current form could have been invented in the

absence of language” [6], learning programming as an

activity is not based solely on learning a programming

language. It is primarily about solving logical tasks and

then applying a programming language to recording

resulting solutions in text form for subsequent reuse.

Programming languages are primarily a tool for

formalizing generalized solutions.

The process of thinking itself does not directly

correlate with speech, only overlapping with it in some

areas [7]. More specifically, instrumental thinking – the

ability to understand mechanical joints and devise

mechanical solutions for problems that are mechanical in

their nature – is linked to concepts and speech to a much

lesser degree. Actions become subjectively comprehended

before being manifested in speech. The primary function

of instrumental thinking does not lie in transferring of

knowledge but in applying accumulated knowledge to

problem solving [8]. It is this kind of thinking that

educators in engineering need to foster among their

students.

When text or speech is used in a learning environment,

three of its functions must be considered. First, the

writer/speaker’s intention is to communicate thoughts and

ideas using language. Second, his intention is to be

understood exactly. Third, “[...]beyond the linguistic code,

communication entails a special structure of embedded

intentions (the intention that others understand one’s

intentions) and is based on cooperative principles by

which interlocutors work together toward understanding

each other” [9]. This last function can never be guaranteed

to apply when communicating through text or speech,

because when the source of information encodes ideas

into natural language the ideation process of the person(s)

receiving that information is intruded upon. It is for these

reasons that lectures and books for the most part fail to

efficiently teach complex concepts, of which

programming is a primary example. A question then

arises: is there an alternative, more efficient way to teach

the aforementioned “spirit of programming”; can students

be taught to think like software engineers before learning

a programming language and writing a single line of

code?

III. COMPUTATIONAL THINKING

The term “instrumental thinking” borrowed from

psychology, while it applies to programming, is not

directly linked to it because it had been in use before

programming as activity fully emerged. Computational

thinking – “the thought process involved in formulating a

problem and expressing its solution(s) in such a way that a

computer—human or machine—can effectively carry out”

[10] – will be used in this paper to refer to the kind of

thinking that should be developed in engineering students.

Computational thinking as a concept does not describe a

new kind of thinking process in a neuro-biological sense,

it is a specialized term substituting “instrumental

thinking” that implies understanding of objective

processes specific to the problem at hand. However, it has

been stated that “computational thinking is

conceptualizing, not programming. It describes a way of

thinking at multiple levels of abstraction, not only the

ability to program” [11][emphasis added]. Thus,

programming is a subset of computational thinking, since

computational thinking involves solution expression, at

the same time contrasting itself with programming. That

has other implications as well. Firstly, that

“programming” as an activity is separated into several

distinct stages: formulating a problem, expressing a

solution (in mathematical notation, programming

language etc.), executing, evaluating – some or all of

which go under the aegis of computational thinking,

which “complements and combines mathematical and

engineering thinking” [12]. Each of these stages requires

different strategies, concepts, and forms of knowledge;

this would mean that learning to do each of them would

require different approaches as well. Secondly, expressing

a solution – recording a set of steps using natural or

formal languages – itself requires a specific form of

thinking. The nature of this process is more easily

understood since it involves mapping ready instructions to

a specific language’s grammatical and syntactic rules. The

thought processes behind the remaining two activities are

not as easily defined.

What’s important to point out is, it is not hands-on

(empirical) experience that is responsible for developing

knowledge but the nature of the experienced activity,

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

314

because the human brain develops new pathways in

response to acquiring new information [13]. Therefore, the

chosen learning strategy bears the most importance in

regards to the effectiveness of learning processes.

IV. NON-LINGUISTIC METHODS OF TEACHING

While it remains to be empirically confirmed whether

non-linguistic forms of learning are more efficient than

traditional forms, there are several important benefits of

using non-linguistic methods of teaching which could be

leveraged for an overall more efficient learning process,

regardless of the medium: language agnostic learning

solutions, conformity with the multimedia principle of

delivering information, cognitive load theory-aware

methods of teaching, reflection-based learning, reactive

learning environments, inference-inductive activities. This

is by no means an exhaustive list, and these characteristics

are not exclusive or inherent to non-linguistic learning

methods but all of them can be tapped into using non-

linguistic forms of learning with the help of proper tools

to enhance the learning process.

Using non-linguistic methods of transferring

information has two immediate consequences. First,

students are not limited by the need to have prior

knowledge of a specialized language or notation, or the

need to dedicate time to getting acquainted with a

notation/language. Second, it could also be beneficial to

transfer information without the use of text, instead

planting ideas into the respective areas of the brain

directly (similarly to how code does it, appealing to the

multiple-demand system [14]). Working memory is

limited in how much information it can hold onto at any

one time. That amount can be looked at as cognitive load,

“the cognitive effort (or amount of information

processing) required by a person to perform [a] task” [15].

It can be associated with a specific topic, the way

information or tasks are presented to a learner, or the work

put into creating a permanent store of knowledge (a

schema). Non-linguistic forms of learning reduce the

amount of extraneous information students must sift

through while performing a learning task, which enables

them to focus on the information relevant to learning,

reducing cognitive load.

Cognitive theory of multimedia learning (CTML)

assumes that “the working memory processes verbalized

and visual pictorial information in two separate channels”

[16]. To leverage that inherent characteristic of working

memory it is advised to use multimedia instructions to

“maximize the amount of available mental resources”

[16]. It has been empirically shown that “people learn

more deeply from a multimedia message when extraneous

material is excluded rather than included” [1]. Tools that

conform to CTML limit the use of text and guide the

learner’s focus by other means (for example,

communicating essential information and relations about

information via spatial arrangement) [17].

Reflection is another powerful teaching tool. “When

learners reflect, the otherwise implicit knowledge

becomes digested through active interpretation,

questioning, and exploration” [18]. It is worth pointing out

that reflection is widely used in modern-day programming

for incrementally improving software features (analysis)

and diagnosing problems in software products

(debugging). It is a crucial skill for a software developer.

Yet very little time is dedicated to teaching core concepts

of debugging, analysis, and profiling
2
 to beginners.

Purpose-built non-linguistic learning tools could and

should incorporate reflection into the learning process,

since “it is essential to increase learning outcomes and the

learner’s awareness of their own learning” [18].

Reactivity is omnipresent in computer games because

it is one of the primary tools designers and programmers

use to guide users during the gaming process. Consider

this simple example: playing a tabletop version of

Solitaire for the first time. If the player does not have a

good grasp of the game’s rules and makes a mistake

(places a card in an invalid position) he will not be aware

of his mistake unless someone else points it out. Now

replace the tabletop version with a software version of the

same game. The rules did not change, but now if the

player makes the same mistake, the game can react to it by

notifying the player of that. In fact, developers can have

checks for all possible invalid game states in place to

prevent players from making any kind of mistakes. This is

a great teaching tool because it does not require prior

experience with the game from players. The game can be

successfully completed by trial and error, simultaneously

teaching players its rules. This principle could be utilized

in educational software to teach certain aspects without

requiring learners to read large volumes of text.

Inference is one of the primary functions by which

humans receive information, especially in cases where

“sensory data are scanty or ambiguous, or incongruities

occur in perceptual situation” [19]. Naturally, inference

plays a major part in the process of non-linguistic

learning. Human communication is characterized by its

“intentionality and cooperative processes, not by language

alone” [9]. A structure of such intentions embedded into

communication “makes it possible to infer meanings

beyond explicitly conveyed language” [9]. There is a

plethora of research data supporting the idea of the

effectiveness of visual “displays” in promoting learning.

Cognitive processing has several forms (Mayer’s “select-

organize-integrate” model) that can be leveraged “to

2
 The process of gauging the amount of resources software applications

require to run, usually employed to detect deficiencies in resource
management.

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

315

afford different kinds of inferences” by using visual

displays [17].

In this context selection refers to focusing on specific

information in an instruction. It can be promoted by

driving attention to one part of a message and omitting

non-critical information. Organization refers to inferring

relations between pieces of information. It is especially

important for memorization since associations between

new data and prior knowledge “facilitates retrieval from

long-term memory”, this process is guided by integration.

To summarize, significantly reducing or completely

eliminating the reliance on text should be the primary

objective of computer science educators, as this paper

argues, and the methods described above can be used for

that with great effectiveness.

V. EXISTING RESEARCH

There are several academic examples of note that

show work being done on the subject of teaching

programming to children using visual media. Experiments

conducted with middle school children by Adele Goldberg

et al. at Stanford showed promise initially [20]. Using

early implementations of the Smalltalk programming

language scientists attempted to ingrain basic

programming concepts into children’s minds. In 1973

Alan Kay, the original author of Smalltalk, joined

Goldberg’s team of researchers to develop new

approaches to children’s computer education using

bleeding edge computer software technology. He

proposed Smalltalk as the basis for further educational

experiments. To Kay it was apparent that “the children

could [...] draw pictures on the screen, but there seemed to

be little happening beyond surface effects” [20]. At the

same time he recognized that teaching concepts of object-

oriented design to children would be a dead end, since it

was still a fresh idea alien even to seasoned programmers.

An alternative approach that utilized a visual language for

communicating concepts had to be developed. Kay called

it literacy, “the content of this new kind of authoring

literacy should be the creation of interactive tools by the

children” [20].

During the experiment each group of students

consistently had a few children that excelled at their tasks

and managed to produce working software prototypes

(albeit very limited in scope and features): a painting

application, object-oriented illustration system, music

score capture system, circuit design system, to name a few

[20]. After several groups of children had gone through

the training, researchers made a discovery that each

group’s progress didn’t generalize well at all. That is to

say, only a small number of children would produce

something significant at the end of the course, while 80%

of the children would struggle, because the knowledge

wouldn’t come to them naturally. Another compounding

effect was the children’s background, “children were

chosen from the Palo Alto schools (hardly an average

background) and we tended to be much more excited

about the successes than the difficulties” [20]. The overall

success of any given child wouldn’t “extend into the

future as strongly” as Kay and Goldberg had hoped [20].

What had been happening was Kay using his existing

knowledge to generate ideas that were far from intuitive

for beginners, in actuality students were struggling to see

the links between going from one set of instructions to the

next in Kay’s examples. Kay later concluded, “[it] isn't

enough to just learn to read and write. There is also a

literature that renders ideas. Language is used to read and

write about them, but at some point the organization of

ideas starts to dominate mere language abilities. And it

helps greatly to have some powerful ideas under one's belt

to better acquire more powerful ideas” [20]. This is where

he agrees with Elliot Soloway [21] in that the success for

most students depends not on any particular features of a

programming language, but on how easy it is for a

beginner to be able to think in the same way that good

programmers think. Programming concepts should be

learned gradually over a prolonged period of time in order

to build up the structures that provide forward-thinking

capabilities required to design software solutions. Kay

calls this ability fluency – the process of building mental

structures that hide “the interpretation of the

representations” [20], similar to how people that know

how to read don’t perceive written text as symbols but

rather as the direct meaning behind the text.

VI. EXAMPLES

This part will describe a software product that

conforms to the characteristics and methods listed above,

very effectively employing them to promote non-linguistic

learning. It is worth noting that this example was not built

as dedicated educational software, which is interesting in

itself. The best work on promoting computational thinking

using innovative approaches is being done outside of

education
3
, while the opposite would be expected.

Baba Is You
4
 is a computer puzzle game in which

puzzles are solved using linguistics. The rules of the game

are not explained through textual descriptions, instead

they are presented for each puzzle as objects that form

short phrases that define the relations between objects on

the screen, and are a part of the playing space (see fig. 1).

3
 https://www.zachtronics.com/zachademics/

4
 https://hempuli.com/baba/

https://www.zachtronics.com/zachademics/
https://hempuli.com/baba/

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

316

Figure 1. First puzzle in the series, all basic elements on screen

The text “BABA IS YOU” in the upper left corner

indicates to the user that an entity named Baba is under his

control, it is the player’s means of interacting with the

world. “FLAG IS WIN” hints at the winning condition

(get Baba to the flag to win), “WALL IS STOP” informs

the player that the playable character cannot go through

wall tiles. “ROCK IS PUSH” indicates to the player that

tiles that look like rocks can be pushed away. But it is not

until the second puzzle that the players realize, there is a

lot more to the problems presented by the game to them

(see fig. 2).

Figure 2. Starting conditions (left); winning condition satisfied (right)

Baba is surrounded by walls. The phrase “WALL IS

STOP” is placed right next to the player’s character. This

is a subtle hint at how subsequent puzzles are designed.

Baba can interact with everything on the screen including

phrases that describe the rules. And those phrases can be

changed by using Baba to push parts of them away.

Altering the phrase in such a way will change the rules

governing the current puzzle. For example, pushing either

“wall”, “is” or “stop” in that phrase will make all the walls

on the screen non-corporeal allowing Baba to reach the

flag on the other side of the wall. Since there is no

limitation on where you can push different elements

within the confines of the screen, it is possible to push

“win” in order to form the phrase “WALL IS WIN” (see

fig. 3).

Figure 3. Changing rules to make “wall” the winning condition by

spelling “wall is win”

This will expectedly allow the level to be completed

by placing Baba on top of any wall tile, revealing an

alternative solution to this puzzle. Players are taught

another important skill in this instance: thinking “outside

the box”, which is a particularly important skill for a

programmer to have, because every problem in

programming has multiple viable solutions. Some

solutions are more effective, while other solutions –

cheaper etc. But all of them are valid. The way Baba is

You teaches this and other aspects of computational

thinking without saying as much as an entire sentence, is

ingenious.

Games are inherently suited for use in education. All

higher animals engage in some form of games for learning

purposes in the early stages of their lives [22]. Experience

gained during such activities is applicable in real life.

However, the same cannot be said about most computer

gaming software. Games are well suited for learning in

context of specific forms of knowledge, where games fare

much better than other forms of media. Knowledge that is

inherently hard to verbalize makes a good use case for

educational software. Software that models systems is

particularly good at teaching computational thinking, and

excels at teaching programming. It enhances acquisition

of skills like empirical validation, technical intuition etc.

VII. CONCLUSIONS

Before an engineering student can learn complex

abstract concepts, he must learn a programming language

and how to write a simple program in that language. The

traditional approach to training using text is much less

effective because the student is hindered by his lack of

knowledge of: the relation between hardware and

software, programming languages, basic constructs

(algorithms), core paradigms etc. The use of specialized

software allows for teaching those concepts to students

without any prior knowledge, in parallel to other

established methods.

Interactivity is one of the most important properties of

computer software. It enables software to react to the

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

317

actions of the user in ways that allow the user to gain

experience and knowledge non-linguistically. Each

interaction can be viewed as a self-contained experiment:

the user thinks of a desirable outcome, tries an action,

looks at the reaction, evaluates the outcome and repeats

the loop if necessary. Coincidentally this mirrors thought

processes that occur when completing programming tasks.

Contemplating an idea, implementing it in code, launching

it on a computer, the computer instantly reacting to it. If it

reacts in an unexpected way it is seldom not a teaching

moment, it enables learning from expertise. The user

learns something new about the programming language

being used, about the way the computer processes

information, about their own thought process. These

characteristic properties of computer software could be

harnessed for educational purposes.

Software engineering is an applied science. It requires

expertise in multiple domains. “Expertise is an ability

acquired mostly by experience” [3]. However, it is worth

noting that this effect is not uniform with learners across

all levels of experience. “When assessing which agent,

either the instructor or the learner, was most effective, we

observed mixed results in the literature, [...] novice

students may learn better under instructor-managed

conditions, whereas more expert students may learn more

under learner-managed conditions” [23]. Software has the

means to provide education with the tools required for

enabling a richer learning experience, circumventing

traditional text-heavy forms of teaching, providing more

effective methods of learning concepts that are essential

for developing computational thinking, that at the same

time are hard to verbalize. However, it is unclear to what

extent non-linguistic new forms of teaching would be

more effective. There is still need to accumulate empirical

proof to quantify the assumed positive effects of non-

linguistic learning, but that would have to be the subject of

a future study.

ACKNOWLEDGMENT

The author would like to thank the anonymous

reviewers for their feedback and advice.

REFERENCES

[1] R. Mayer, and L. Fiorella, “Principles for reducing extraneous
processing in multimedia learning: Coherence, signaling,

redundancy, spatial contiguity, and temporal contiguity

principles”, Cambridge Handbook of Multimedia Learning,
pp.279-315, 2014.

[2] M. Olsson, and P. Mozelius, “Learning to Program by Playing

Learning Games”, European Conference on Games Based

Learning, 2017.

[3] G. Albano, and F. Formato, “E-learning from Expertize: a
Computational Approach to a non-textual Culture of Learning”,

Advanced Learning Technologies Conference, 2001.

[4] “You Can Grow Your Intelligence”, Brainology Curriculum
Guide for Teachers, Mindset Works, 2014.

[5] C. I. Petersen, P. Baepler, A. J. Beitz, and J. Walker, “The

Tyranny of Content: “Content Coverage” as a Barrier to Evidence-
Based Teaching Approaches and Ways to Overcome It”, CBE life

sciences education, 2020.

[6] Y.-F. Liu, J. Kim, C. Wilson, and M. Bedny, “Computer code
comprehension shares neural resources with formal logical

inference in the fronto-parietal network”, eLife, 2020.

[7] L. Vygotsky, “Thinking and Speech”, State Socio-economic
Publishing, Moscow, Leningrad, 1934, p. 88 (in Russian).

[8] Y. Kornilov, and I. Vladimirov, “Instrumental experience as

component of the experience of practical change”, Yaroslav
Psychology Herald, ed. 16, RPO, Moscow, Yaroslavl, 2005, pp.

21-28 (in Russian).

[9] U. Liszkowski, “Three Lines in the Emergence of Prelinguistic
Communication and Social Cognition”, Journal of Cognitive

Education and Psychology, vol. 10, no. 1, Springer Publishing

Company, 2011, pp. 32-43.
[10] J. M. Wing, “Computational Thinking Benefits Society”, Social

Issues in Computing, New York Academic Press, 2014.

[11] J. M. Wing, “Computational Thinking”, Communications of the
ACM, vol. 49, no. 3, 2006, pp. 33-35.

[12] A. Lamprou, and A. Repenning, “Computational Thinking [does

not equal] Programming”, Swissinformatics Magazine, 2017.
[13] E. R. Oby, M. D. Golub, J. A. Hennig, A. D. Degenhart, E. C.

Tyler-Kabara, B. M. Yu, S. M. Chase, and A. P. Batista, “New

neural activity patterns emerge with long-term learning”, PNAS,
2019.

[14] A. Ivanova, S. Srikant, Y. Sueoka, H. H. Kean, R. Dhamala, U.-

M. O’Reilly, M. U. Bers, and E. Fedorenko, “Comprehension of
computer code relies primarily on domain-general executive brain

regions'', eLife, 2020.
[15] D. Shibli, and R. West, “Cognitive load theory and its application

in the classroom”, Impact Journal of the Chartered College of

Teaching, Making Learning Stick: Open Access Cognitive
Science, 2018.

[16] M. Thees, S. Kapp, M. P. Strzys, P. Lukiwicz, J. Kuhn, and F.

Beil, “Effects of augmented reality on learning and cognitive load
in university physics laboratory courses”, Computers in Human

Behavior, 2020.

[17] M. McCrudden, and D. N. Rapp, “How Visual Displays Affect
Cognitive Processing”, Educational Psychology Review, 2017.

[18] J. Villareale, C. F. Biemer, M. S. El-Nasr, and J. Zhu, “Reflection

in Game-Based Learning: A Survey of Programming Games”,
preprint, 2020.

[19] M. D. Vernon, “Cognitive Inference in Perceptual Activity”,

British Journal of Psychology, vol. 48, no. 1, 1957, pp. 35-47.
[20] A. C. Kay, "The Early History of Smalltalk", History of

Programming Languages II, Association for Computing

Machinery, 1996.
[21] E. Soloway, J. C. Spohrer, “Studying the Novice Programmer”,

Lawrence Erlbaum Associates, Inc., New Jersey, 1989.

[22] J. Huizinga, “Homo Ludens”, Progress, 1992, pp. 21-45 (in
Russian).

[23] J. C. Castro-Alonso, B. B. de Koning, L. Fiorella, and F. Paas,

“Five Strategies for Optimizing Instructional Materials: Instructor-
and Learner-Managed Cognitive Load”, Educational Psychology

Review, 2021.

