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Abstract - The initial-boundary problem for the heat 

conduction equation with the inversion of the argument are 

considered. The Green’s function of considered problem are 

determined. The theorem about the Poisson integral 

limitation is proved. The theorem declared that the Poisson 

integral determine the solution of the first boundary 

problem considered and proved. 
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INTRODUCTION 

In this paper the solution of the first boundary value 

problem for the heat conduction equation with the inversion of 

the argument is found. The process of heat conduction was first 

described by Jean Baptiste Joseph Fourier (1768 - 1830) in 1807 

in the work "Equations with partial derivatives for heat 

conduction in solids". A description of the results of other 

scientists who studied and developed this theory is presented in 

[1]. Thermal conductivity is the molecular distribution of 

thermal energy in various solids, liquids and gases due to the 

difference in temperature and due to the fact that the particles 

are in direct contact with each other. Based on different criteria, 

models of heat conduction processes are divided into two 

groups of models using integral and fractional order derivatives. 

Models with derivatives of an integer order are stationary and 

non-stationary. 

Non-stationary models of one-dimensional heat conduction 

are described by the equation of heat conduction [4]. Different 

methods of solving this problem are described in [2, 3, 4]. 

Applied aspects of such problems are described in [5, 6, 7]. 

If the evolution of the concentration of impurities, point 

defects, and the temperature field is studied, then the 

corresponding transfer coefficients are not constant values. 

Processes with spatially dependent transfer coefficients or the 

desired field are well studied (see, for example, [2]) and 

sufficiently describe processes in heterogeneous and nonlinear 

media [8]. Also described here are applied problems for 

modeling and research of which the transfer coefficients depend 

on the time change. At the same time, physically adequate 

modeling of situations most often requires research in a semi-

limited area [7]. 

Our work examines the first boundary value problem for the 

non-homogeneous nonlinear heat conduction equation with 

argument deviation, which generalizes the corresponding 

problem from [7]. 

FORMULATION OF THE FIRST BOUNDARY VALUE 

PROBLEM  

Let 0, 0a b  be real numbers; , ,x R t R    are 

independent variables; f, ,  are known continuous 

functions; u(x, t) is the desired function that describes the 

evolution of the system defined on the semi-axis 

x R for all ,t R . We will study the problem 
2 ( , , ( , )), 0,t xxu a u f x t u x t h x t h     , (1) 

0( , ) | ( , ), 0t hu x t x t x    , (2) 

(0, ) ( ),u t t t h   (3) 

which is the first boundary value problem, where the 

functions ( , ) ( {0 })x t C R t h     is initial function, 

( ) ( )nt C R  is boundary function, { ; }hR t t h   , 

{ ; 0}R x x   ), ( , , ) ( )hf x t u C R R R     is the 

inhomogeneity of equation (1) is well known. If a smooth 

solution of the problem (1) – (3) is sought up to the limit, 

then the initial and marginal functions must be 

consistent (0, ) ( )h h  .  
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THE STEPS METHOD 

Let 2h t h  , then 0t h  , ( , ) ( , )u x t h x t  . x > 

0. Then in (1) – (3) we get the problem: 
2 ( , , ( , )), 0, 2t xxu a u f x t x t x h t h     , (4) 

( , ) | ( , ), 0t hu x t x h x   , (5) 

(0, ) ( ),u t t t h   (6) 

with the conditions of agreed (0, ) ( ).h h   

We are looking for a solution of problem (4) – (6) in 

the form of sum of three functions  

       1 2 3,    , ,    ,  u x t u x t u x t u x t   , (7) 

where ,1 3iu i  , respectively, take into account the 

influence only initial condition, the boundary condition 

and the inhomogeneity of the, that is, they are the 

solutions of such problems. 

 

Problem 1. Find a function  1 ,  u x t  that satisfies the 

conditions 
2

2

2

( , ) ( , )
, 0, 2

u x t u x t
a x h t h

t x

 
   

 
, (8) 

( , ) ( , ), 0u x h x h x  , (9) 

(0, ) 0, 2u t h t h   , (10) 

moreover, (0, ) (0, ) 0h u h    is a condition of agreed. 

Problem 2. Find a function  2 ,  u x t  that satisfies 

equation (8) and conditions 

( , ) 0, 0u x h x  , (11) 

(0, ) ( ), 2u t t h t h   , (12) 

moreover, ( ) 0h   is a condition of agreed. 

Problem 3. Find the function  3 ,  u x t that satisfies 

equation (1) and conditions (10), (11), which are agreed. 

 

2.1. Solving problem 1  

 

Let's expand the domain of definition of equation (8) 

and the initial condition to , 2x R h t h   and solve it 

with help of separation of variables method 

( 1( , ) ( ) ( )u x t X x T t  and after rearrangement in (8) and 

separation of variables, we obtain that 
2 2 ( )( ) ( ) , ( )a t h i xT t C e X x e     , where  is the variable 

separation parameter. Then the solution is 
2 2 ( )

1( , , ) ( ) ,a t h i xu x t C e R        and to take into 

account all R $ we create a function 

2 2 ( )

1( , ) ( ) , , 2 ,a t h I xu x t C e d x R h t h  


  



     

which satisfies condition (9). Then we get that 

( , ) ( ) i xx h C e d  




     , 

and  

1
( ) ( , )

2

iC h e d R   








   

and 

2 2 ( ) ( )

1

1
( , ) ( , ) .

2
{ }a t h i xu x t e d h d      



 

   

 

    

The inner integral calculated in [4] 
2

2 2 2(

( )

( ) 4 ( ))1 1

2 2 (

x

a i x a tt h he d e
t h



   
 

 
 



  


  

is denoted by ( ; )G x t h  and is the fundamental 

solution of equation (8). Then 

1( , ) ( 0 ; ) ( , ) , , 2u x t G x t h h d x R h t h   




     . (13) 

We use formula (13) to construct a solution to 

problem 1. For this, instead of equation (8), we consider 

equations 
2

2

2

( , ) ( , )
, ,

U x t x t
a x R t h

t x

U 
  

 
, (14) 

with conditions (9), (10), extending in condition (9) the 

initial function ( , )x h for x < 0 nonearly, and we leave 

condition (10) unchanged: 

( , ), 0,
( , ) ( , )

( , ), 0.

x h x
U x h x h

x h x






   

  
 (15) 

Then, according to formula (13), the solution of 

problem (14), (15), (10) is 

U(x, t) { ( ; ) ( ; )} ( , )G x t h G x t h h d    




      . 

In the integral where 0  , we replaced    . 

Simplifying the difference of the exponents included in 

the expression for the function G, we obtain that  
2 2

24 ( )

1

0

1
( , ) ( , )

2( )( )

x

a t h x
u x t x h e sh d

t ht h




 


 



 , 

where x > 0, h < t < 2h. Using the method of 

mathematical induction, we prove that in case 

0, ( 1)x kh t k h    the solution to problem 1 takes the 

form 
2 2

24 ( )

1 2

0

1
( , ) ( , )

2 ( )( )

x

a t kh x
u x t kh e sh d

a t kht kh




  


 



 (16) 

Therefore, the following theorem is true. 

Let's mark 
2 2

24 ( )

1 2

1
( , , )

2 ( )( )

x y

a t kh xy
G x y t kh e sh

a t kht kh




 


, (17) 
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0, 0, ( 1) ,x y kh t k h k N      . 

Definition. A function 
1( , , )G x y t kh   is called a 

Green's function of problem (1), (2), (3) if it satisfies the 

following conditions: 

1) the function 
1( , , )G x y t kh is continuous on x, y, t, 

continuously differentiable on t and twice continuously 

differentiable on x, y when x > 0, y > 0, kh < t < (k + 1)h, 

k  N, and  possibly with the exception in the point x = y, 

t = kh; 

2) the function 
1( , , )G x y t kh  by variables x and y 

satisfies the equation 
2

21 1

2

G G
a

t x

 


 
 everywhere except 

in the points x = y, t = kh, k  N; 

3) the function 
1( , , )G x y t kh  satisfies the boundary 

condition G1(0, y, t – kh) = 0. 

The Green's function satisfying this definition is 

constructed above and takes the form (17) 

1 1( , , ) ( , , )G x y t kh G y x t kh   . 

 

2.2. Properties of the solution of the problem 1 

Given that  
2 2

2 2

( ) ( )

4 ( ) 4 ( )

1

1
( , , )

2 ( )

x x

a t kh a t khG x y t kh e e
t kh

 



 
 

 
 
 

   
   

 

we get from (16), when | ( , ) | Mkh    
2 2

2 2

( ) ( )

4 ( ) 4 ( )

1

0 0

1
| ( , )

2 ( )

x x

a t kh a t khu x t M e d e d
t h

 

 


   
 

 
 

  
   

   

  1 2M I I . 

In the integral I1 we will do replacement 

22 ( )

x

a t kh








 , and in the integral I2 

22 ( )

x

a t kh








. Then 

2

1 2
z

I e d 






  , 
2

2 2
z

I e d 


  , 

where 
2

x
z

t kh



and we get an estimate 

1| ( , ) | erf ( ),
2

x
u x t M

t kh
 


, (18) 

x > 0, kh < t < (k + 1)h.  

So, the following theorem is proved. 

Theorem 1. If there exists a number M > 0 such that 

the initial function ( , )x kh  is bounded when x > 0, h > 0, 

k  N, | ( , |x kh M  , then the function u1(x, t) (16) when 

x > 0, kh < t < (k + 1)h is also bounded and the estimate 

(18) is true for it. 

If 0( , )kh   , where 0  is a number, then 

1 0( , ) erf
2

( )u
x

x t
t kh




, 

0, ( 1) ,x kh t k h     
2

0

2
erf ( ) exp{ }

x

x d 


   is the 

error function. 

By direct verification, it is possible to make sure that 

the Green's function (17) satisfies the homogeneous heat 

conduction equation (item 2 of the definition). When 

formally differentiating the function (16) under the sign 

of the integral, we obtain expressions 
2

2

( )

4 ( )

2

0

1
( , ) | |

( ( ))

x y

m a t kh

r
kh x y e dy

a t kh
 

 


  , 

x > 0, kh < t < (k + 1)h, where integrable functions are 

majored by an expression of the form 
2

| |mM e  
that is 

integrable on the entire numerical axis. This ensures 

uniform convergence of the integrals obtained after 

differentiation under the sign of the integral. Then the 

Poisson integral (16) is a continuous function, 

differentiable of arbitrary order with respect to x and t 

when x > 0, kh < t < (k+1)h, k  N, bounded with a 

bounded initial function, satisfying the homogeneous heat 

conduction equation (8) , since the Green's function (17g) 

satisfies equation (8). The implementation of the initial 

condition (9) and the boundary condition (10) is carried 

out similarly as in [4, 8]. Let us prove the uniqueness 

theorem of the solution to problem 1. 

Theorem 2 (the uniqueness for an infinite straight 

line). 

Let there be a number M > 0 such that in the domain 

0x  and ( 1) ,kh t k h k N    the functions 

 1 ,  u x t and  2 ,  u x t  are bounded, that is 

 ,   ,iu x t M   1,2i  , satisfy the equation (8) and 

condition 

1 2( , ) ( , ), 0, ,u x kh u x kh x k N    

then 

1 2( , ) ( , ), 0, ( 1)u x t u x t x kh t k h     . 

Proof. Consider the function 

      1 2,   ,  –  , ,v x t u x t u x t  

which is continuous, equation (8), bounded by  

1 2| ( , ) | | ( , ) | | ( , ) | 2 ,v x t u x t u x t M    

0, ( 1) , ( , ) 0x kh t k h v x kh     .  

Consider the domain 0 , ( 1)x L kh t k h     , 

where L is a real number and a function 



20-21 October, 2022 

Chisinau, Republic of Moldova IC ECCO-2022 
The 12th International Conference on 

Electronics, Communications and Computing 

   

 

212 

 

 

2
2

2

4
( , ) ( ) ,

2
( )M x

V x t a t kh
L

    

for which 

 

2

2

4
,

V Ma

t L






2

2 2 2

4 4
,

V Mx V M

x L x L

 
 

 
 

and which satisfies the thermal conductivity equation (8), 

as well as 

( , ) ( , ) 0V x kh v x kh   

( , ) 2 | ( , ) |V L t M v L t    , (19) 

For each limited region 0 ,x L   

( 1) ,kh t k h k N    , the principle of the 

maximum value is true [4, p. 194]. From Corollary 2 [4, 

p. 198] for the functions ( , ),u V x t  ( , ),u v x t  

( , )u V x t , taking into account (19), we obtain that 

2
2

2

4
( ) ( , )

2
( )M x

a t kh v x t
L

    ≤ 

2
2

2

4
( )

2
( )M x

a t kh
L

   . 

We fix (x, t) and use the fact that L is arbitrary and 

can be increased indefinitely. Passing to the limit at 

L  , we obtain that ( , ) 0v x t  for 0,x   

( 1)kh t k h    

Theorem 2 is proved. 

Therefore, the following theorem is true. 

Theorem 3. If | ( , ) | ,x h M   0,x   0,M   

0h  , then the solution of problem (8), (9), (10) exists, 

is unique and is determined by formula (16). 

 

2.3. Solving the problems 2 and 3 

 

It is necessary to solve equation (8) when the zero 

initial condition (11) and the general boundary condition 

(12) are met. First, let's solve the auxiliary problem of 

cooling a heated rod, at the boundary of which a constant 

zero temperature is maintained. Then, for equation (8), 

the Cauchy condition and the boundary condition are 

given as follows: 

   1 0 1,   ,  0,    0,    0,    .V x t T v t x t h   

Then, according to formula (16), we get that 

2

0

 erf ( ),
2 ( )

x
v T

a t t



0,x   t > t0, (20) 

Let 0( )t const   in condition (12). Then, 

according to (20), the function  

2

0

 erf ( ),
2 ( )

x
v

a t t



0,x   t > t0, 

is a solution of problem (8), (11), (12). Then the function 

0 0 2

0

( , ) ( , ) 1- erf ( ) ,
2 ( )

x
v x t v x t

a t t
 

 
   
  

 

x > 0, t > 0. (21) 

We denote the expression in parentheses of formula 

(21) by U(x, t – t0), which makes sense when t > t0. If for   

t < t0 the value of this function is extended by zero, then 

this definition is consistent with the zero value of the 

function at t = t0. The limit value of this function at x = 0 

is a step function equal to zero at t < t0and equal to 1 at t 

> t0. The constructed function is often found in 

applications and is an auxiliary link in constructing the 

solution to problem 2. 

The second auxiliary task is to find a solution of the 

equation (8) under the following conditions: 

0( , ) 0, 0,v x t x   

0 0 1

1

,
(0, ) ( )

0,

,t t t
v t t

t t




  
   

 
. 

It is directly verified that 

0 0 1( , ) [ ( , ) ( , )],V x t U x t t U x t t     

00, .x t t   

If 

0 0 1

1 1 2

1 2 1

1 1

, ,

, ,

( ) . . . . . . . . . 

, ,

, ,

n n n

n n n

t t t

t t t

t

t t t

t t t











  

 

 


 



 
  


 

, 

and then the solution of the corresponding problem can 

be written in the form 
2

1

0

( , ) [ ( , ) ( , )]
n

i i n

i

u x t U x t t U x t t






      

+ 1 1( , )n nU x t t    

Using the theorem on finite increments, we get  
2

0

( , ) ( , ) |
i

n

i

i

u x t U x t
t

  







 


  

+ 1 ( , )n nU x t t   , (22) 

where 0,x   1i i it t    
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The approximate solution of problem 2 can be 

obtained by formula (22), if replace the function ( )t  

with a piecewise-constant function.  

Heading to the limit when the interval of constancy 

of the auxiliary function decreases, we obtain that the 

limit of the sum (22) will take the form 

0

( , ) ( )

t
U

x t d
t

   





, 

because when 0,x   we have 

1
1 1

0
lim ( , ) 0

n
n n

t t
U x t t


 

 
  . 

If we consider that 

2

0

( , ) 2 ( ,0, ) 2
U G G

x t a x t a
t x






  
  

  
 

then we will get the final result 
2

2 2 3/2
( , )

[ ( )]2

t

kh

a x
u x t
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x > 0, ( 1)kh t k h   . 

The solution of problem 3 using the Green's function 

(17) can be written in the form of a Poisson integral 

3 1
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u t x d f y G x y t kh dy 


    (24) 

x > 0, ( 1)kh t k h   , k  N, for the existence of 

which the function  ,f x t must be such that the 

improper integral in formula (24) coincides. 

So, the following theorem is proved. 

Theorem 4. The solution of problem (8), (11), (12) 

is determined by formula (24). The solution of problem 

(4), (5), (6) is determined by formula (7), where the terms 

u1, u2, u3 are the solutions of problems 1, 2, and 3, 

respectively. 

CONCLUSION  
In this paper was formulated the first boundary value 

problem for the heat conduction equation containing a 

nonlinear term dependent on the searched function with a 

deviation of the argument for the first time. For such 

equations, the initial condition is set on a certain interval. 

Physical and technical reasons for lateness can be 

transport delays, delays in information transmission, 

delays in decision-making, etc. The most natural are 

delays when modeling objects in ecology, medicine, 

population dynamics, etc. Features of the dynamics of 

vehicles in different environments (water, land, air) can 

also be taken into account by introducing a delay. Other 

physical and technical interpretations are also possible. 

The study of the molecular distribution of heat energy in 

various substances (solid bodies, liquids, etc.) leads to 

heat conduction equations. The Green's function of the 

first boundary value problem is constructed for the 

nonlinear equation of heat conduction with a deviation of 

the argument, its properties are studied, and the formula 

for the solution is established. 
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