
Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 29-31 Martie 2022, Vol. I

- 338 -

DOMAIN SPECIFIC LANGUAGE FOR WEB GRAPHICS

Anastasia IAȚCO*, Marius PURICI, Vasile IGNAT, Andrei PĂGÂNU

Department of Software Engineering and Automatics, group FAF-202 , Faculty of Computers, Informatics and
Microelectronics, Technical University of Moldova, Chisinau, Moldova

*Corresponding author: Anastasia Iațco, anastasia.iatco@isa.utm.md

Abstract. The aim of this paper is to show a domain-specific language (DSL) that was designed
special for web graphics. Moreover, this article describes the grammar of the DSL and how it will
work, what are its functions and how this language will relieve the learning and implementing activity
for everyone who is interested in web graphics.

Keywords: domain-specific language, grammar, web graphics.

 Introduction
The importance of the domain-specific languages in software engineering has significantly

expanded in recent times, as a consequence of that fact, that they are designed in order to maintain a
specific set of functions from a certain domain [1]. A DSL holds constructs which absolutely suit the
issue space, allows people that have no relation with the specific domain acknowledge the general
idea and makes it less complex to create a model of the final application.

This article has the purpose to explain the development of a language for creating web
graphics, and at the same time reducing the complexity involved in tasks related to WEBGL and web
graphics in general.

Web graphics in any websites is as significant as the content of the site. Graphics can distract,
teach, or emotionally influence the user, and are decisive for coherence of illustration, and ease of
utilization for interfaces [2].

A lot of people face some issues while learning and working, because they have insufficient
experience that causes the appearance of some difficult moments. WEBGL is not the easiest library
of JavaScript, and many people struggle with learning it, especially at the beginning.

The problem that the proposed DSL aims to solve is the inability of including interactive web
graphics from the point of view of someone with limited experience in the field of computer graphics.

The way in which the domain-specific language aims to solve the given problem as follows:
DSL will automate many things that are present in every WebGL JavaScript file. It will provide a
much more simplified language and will significantly reduce the number of lines needed for mundane
actions by cutting down on the definitions that a user would need to make by generalizing different
parts of the process.

Specifications of the DSL
The fundamental features of the described domain specific language are:
- Create and manipulate 2D and 3D objects;
- Move the camera;
- Load images or obj files;
- Apply texture.

Reference grammar
Grammar is a set of rules that grants the programming language a special form. As a rule, a

grammar is written in the following way: G = {VT, VN, P, S} where:
 “VT” - set of terminals.
 “VN” - set of non-terminal.
 “S” - start symbol.
 “P” - the set of production rules.

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I

- 339 -

In order to have a greater perception of the grammar, in this paper are being specified
particular notations. (Table 1. Metanotations).

Table 1
Metanotations

<symbol> symbol is a nonterminal
symbol symbol is a terminal (a part of a token).

[x] x is optional; note that brackets in quotes ‘[‘ ‘]’ are terminals
x* zero or more occurence of x
{ } used for grouping
| separates alternatives

N = { <program> , <statement_list>, <statement>, <var_declaration> ,

<transform_command> , <apply_texture_command>, <transform_matrix_declaration> ,
<apply_transform_command>, <create_command>, <id>, <number_literal> , <object_type>,
<object_prop>, <image_link>, <prop_assignment>, <prop_name>, <number_literal>,
<apply_texture_command>, <transform_command_list>, <digit>, <alpha> }

T = { Object, Number, Texture, Create, Create Texture, Image, Triangle, Cube, Sphere,
Pyramid, X, Y, Z, Radius, Scale, TranslateX, TranslateY, TranslateZ, RotateX, RotateY, RotateZ,
ApplyTexture, matrix, Transform, 0..9, a..z, A..Z }

S = { program }

Rules:
 P = { <program> → <statement_list>

 <statement_list> → <statement><statement_list>
 <statement_list> → <statement>
 <statement> → <var_declaration> | <transform_command> |

<apply_texture_command> | <transform_matrix_declaration> |
<apply_transform_command> | <create_command>
<var_declaration> → Object <id> = <create_command> |
 Number <id> = <number_literal> Texture <id> = <create_command>
<create_command> → Create <object_type> |
 Create <object_type> { <object_prop> } | Create Texture { Image <image_link>}
<object_type> → Triangle | Cube | Sphere | Pyramid
<object_prop> → <prop_assignment> , <object_prop>
<object_prop> → <prop_assignment>
<prop_assignment> → <prop_name> = <id> | <prop_name> = <number_literal>
<prop_name> → X | Y | Z | Radius | Scale

<transform_command> → TranslateX(<id>) | TranslateY(<id>) |
TranslateZ(<id>) | Scale(<id>) | RotateX(<id>) | RotateY(<id>) | RotateZ(<id>) |
TranslateX(<number_literal>) | TranslateY(<number_literal>) |
TranslateZ(<number_literal>) | Scale(<number_literal>) |
RotateX(<number_literal> | RotateY(<number_literal>) |
RotateZ(<number_literal>)
<apply_texture_command> → ApplyTexture(<id>, <id>)
<transform_matrix_declaration> → matrix { <transform_command_list> }
<transform_command_list> → <transform_command> , <transform_command_list>
<transform_command_list> → <transform_command>
<apply_texture_command> → Transform(<id>, <id>)
<number_literal> → <digit> <number_literal>
<number_literal> → <digit>
<digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 29-31 Martie 2022, Vol. I

- 340 -

<alpha> → a | b | ... z | A | B | ... Z
<id> → <alpha> <id>
<id> → <alpha> <digit>
<image_link> → <char>* }

Code example
A presentation of a code snippet, that was constructed using the DSL described in this paper

is shown in Fig. 1:

Figure 1. DSL code example

Derivation Tree
A derivation tree or parse tree is a graphical representation that illustrates the way in which

strings in a language are being derived, taking in consideration the rules of the grammar [3]. Fig. 2
illustrates the derivation tree obtained from an example of code.

Figure 2. DSL Derivation Tree

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I

- 341 -

Conclusion
This paper presented the Domain Specific Language for Web Graphics that is proposed to

solve the problem of learning hard topics and unwillingness of some to work hard, and solution –
make the learning process easier and more pleasant. The target niche is not so extensive, having
relation on the students of IT faculties and people interested in web graphics.

To summarize everything that was written, the domain specific language that is being
developed is a great alternative to that solutions which have already been discovered, but with more
advantages and ascendancy sides.

References
1. JET BRAINS, Domain-Specific Languages [online] [accessed 25.02.2022]

Available: https://www.jetbrains.com/mps/concepts/domain-specific-languages/
2. WEB DESIGN AND APPLICATIONS, Graphics, [online] [accessed 25.02.2022]

Available: https://www.w3.org/standards/webdesign/graphics
3. SCIENCEDIRECT, Derivation Tree [online] [accessed 25.02.2022]

Available: https://www.sciencedirect.com/topics/computer-science/derivation-tree

