III.P.5. This poster presentation has been modified by authors. It was scheduled as oral presentation V.O.13. on Sept. 4, 12.30 – 12.45

III.P.6. Optoelectronic properties of gallium nitride thin membranes

<u>Tudor Braniste</u>¹, Veaceslav Popa¹, Olesea Volciuc², Ion Tiginyanu^{1,3}

¹National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Moldova. ²Institute of Solid State Physics, University of Bremen, Germany. ³Academy of Sciences of Moldova, Chisinau, Republic of Moldova.

We present the results of a systematic study of persistent photoconductivity (PPC) generated by UV-excitation in thin membranes based on crystalline GaN. The PPC was found to be optically quenched under extrinsic excitation (quanta energy lower than E_g). Interesting optoelectronic phenomena have been evidenced in nanoperforated GaN membranes. In particular, nanoperforation-induced optical quenching of PPC was found to occur at temperatures T < 100 K under intense intrinsic excitation. The obtained results are discussed taking into account strong surface localization of charge carriers in GaN thin membranes as well as UV-induced reactions occurring at surface states under intense intrinsic excitation.