
21-22 October, 2021
Chisinau, Republic of Moldova Software Engineering & Cybersecurity

The 11th International Conference on
Electronics, Communications and Computing

https://doi.org/10.52326/ic-ecco.2021/SEC.03

206

Information Security in Microservices
Architectures

Bazeniuc Ivan 1, Zgureanu Aureliu 2
1 ASEM, 61 Banulescu-Bodoni str., MD-2005, Chișinău, bazeniuc.i@gmail.com

2 ASEM, 61 Banulescu-Bodoni str., MD-2005, Chișinău, zgureanu.aureliu@ase.md

Abstract — In this paper we investigate how can be
provided security of an information system, which uses a
microservice architecture. So, using of microservice
architecture means that information system can be easily
developed, deployed, and tested, but, on the other hand it
means that it should be protected differently than the
information system using monolith architecture. Firstly, a
software architect should decide if each service should be
protected separately or should be better to protect the
system on the whole. Choosing the right way of protecting is
very important, because, in some cases, protection of each
service separately is not the best idea, as this could lead to
code duplication. This means that, in case of necessity of
changes a piece of code or fixing a bug it should be done
everywhere this code appears. To avoid this, there are
developed some services - so called gateways, which, also,
very often have implemented the function of user/client
authentication and authorization using protocol OAuth 2.0.
Anyway, at each stage of development and implementation
of a software product, it is necessary to solve many security
related problems, and if it will not be done properly, then
the company may incur enormous material losses or even
may be closed.

Keywords — microservice; OAuth 2.0 protocol; cloud

infrastructure; information system security; gateway; software
architecture

I. INTRODUCTION
Information is a product that can be bought, sold, or

exchanged, and very often the cost of the data that is
stored in the system exceeds the cost of the information
system itself. In addition, information systems can store
information with personal data of people, the leakage of
which can negatively affect not only the company's image
and its economic performance, but also ordinary people,
data about which were obtained by unauthorized client. It
is difficult to predict how such data might be used. In the
best case, the data will not be used at all or will be used,
for example, for targeted advertising. In the worst case, a
person may be subject to blackmail or lose money from

their accounts. Anyway, the data must be carefully
protected.

Protecting information systems using a microservice
architecture differs from protecting a monolithic
architecture. A feature of the microservice architecture is
that such systems are divided into tens or hundreds of
small services, each of which must perform its function
and, respectively, must be protected [1]. In addition, each
of these services can be used by different clients: a
browser application, mobile applications (with different
operating systems), as well as applications written by
third-party developers, etc. Often different clients need
different data. Mobile app can reflect less data than
desktop user application, and some functions may be
hidden altogether.

Firstly, will be identified which issues exist on direct
access to the service. After it will be described the
characteristics of API gateways, its advantages and
disadvantages, and an example of how to implement such
edge functions as authentication and authorization using
the OAuth 2.0 protocol.

II. ISSUES OF DIRECTLY ACCESSING SERVICES
As it was mentioned, each of the services can be used

by different clients. One of the options for designing an
information system is that clients access services directly
through the Internet (or, less commonly, through a local
area network), as is shown in the Figure 1.

Figure 1. An example of a scheme of requests to services directly from

different clients.

In
te

rn
et

Browser

“Consumer”
service

“Order”
service

“History”
service

Services

Third party
application

API-request

API-request

21-22 October, 2021
Chisinau, Republic of Moldova Software Engineering & Cybersecurity

The 11th International Conference on
Electronics, Communications and Computing

https://doi.org/10.52326/ic-ecco.2021/SEC.03

207

At first glance, this sounds pretty straightforward -

after all, this is how clients call services in monolithic
applications. However, this approach is rarely used in a
microservice architecture because it has the following
disadvantages:

1. To retrieve the desired data using finely divided
services, clients will need to make several requests, which
is not efficient and convenient. Too much communication
between the application and services can adversely affect
the responsiveness of the application, especially if it
passes over the Internet. Perhaps, in some cases, requests
can be executed in parallel and, in this case, the total time
of all requests will not be more than in the case of one
request. But sometimes the requests have to be executed
sequentially, which reduces the usability of the client.
Also, developers of client applications have to write rather
complex code to combine services, which, moreover, may
not work well on weak devices, but also distracts the
developer from their main task - from creating convenient
user interfaces. If the user uses it from a mobile device,
then for each of his network requests is consumed
electricity, which drains the battery faster.

2. Large applications with many users can be deployed
on several servers in order to reduce the waiting time for a
service response. In this case, there will be several threads
of execution that the client should know about, and
moreover, the client should know which thread to send the
request to.

3. Each non-public service must have a security filter
that will check whether the user has the right to make a
request and what information the user can receive in
response to the request. Consequently, the need for any
change in one of these filters often leads to the fact that
such a change must be made in each service the number of
which, for one information system, can reach tens or
hundreds.

4. As the information system evolves, service
developers sometimes change the API and their endpoints,
disrupting the work of existing clients. This is due to what
is known as insufficient encapsulation. Developers can
add new services or split/merge existing ones, and if
information about services or endpoints is embedded in
the client application, changing them can be difficult.
Unlike updating services, deploying a new version of a
client application can take hours or even days. For
example, an update for a mobile app must first be
approved by a corporation such as Apple or Google,
depending on the app store, and made available for
download. At the same time, no one guarantees that users
will download it immediately (or even ever).

5. A separate problem is the fact that many
organizations provide their services to third-party
developers to integrate third-party information systems or
applications with the organization's information system.
Based on this, third-party developers need a stable
interface. When a new version of a service comes out, it
is necessary to get third-party developers to use it, but

very few organizations succeed. If an app's API becomes
unstable, third-party customers may stop supporting it and
move on to competitors. This means that the development
of APIs that are used by other organizations must be
carefully considered. This usually requires maintaining
old versions for a long time, or even keeping them
forever, which is a huge burden on the organization.

Instead of giving customers direct access to services,
organizations often have a separate public API that a
separate team develops. Further will be described the
public architectural API component, better known as the
API-gateway.

III. API GATEWAY

A. API Gateway Characteristic
An API gateway is a service that serves as an entry

point to an application from the outside world. This means
that the integration of all APIs over the Internet is no
longer at the client level, but at the service or back-end
level. It is responsible for routing requests and for some
third-party functionality such as authentication. Thanks to
the API gateway, the client does not need to make many
requests to services, but only needs to make one request to
the service, which serves as a single-entry point for API
requests in the application. An example of a scheme of
requests through the API gateway is shown in the Figure
2.

Figure 2. An example of a scheme of requests to services through an API

gateway from different clients.

So, all requests made by external clients first go to the
API gateway, which routes them to the appropriate
services. The API gateway uses API aggregation to
process other requests, accessing different services and
aggregating the results.

Perhaps a few words should be said about another key
function of the API gateway - request routing. Some API
calls are implemented by directing requests to appropriate
services. When the API gateway receives a request, it
checks the routing map to determine which service to
route the request to.

Of course, the main responsibilities of an API gateway
are routing and API bundling, but it can also take over the
implementation of edge functions. An edge function, as

In
te

rn
et

Browser
“Consumer”

service

“Order”
service

“History”
service

Services

Mobile
application

API-
gateway

API-request

API-request

21-22 October, 2021
Chisinau, Republic of Moldova Software Engineering & Cybersecurity

The 11th International Conference on
Electronics, Communications and Computing

https://doi.org/10.52326/ic-ecco.2021/SEC.03

208

the name implies, is a request processing operation at the
application boundary. Examples include:
• authorization - checking that the client is allowed to

perform a certain operation;
• authentication - checking the authenticity of the client

making the request;
• limiting the frequency of requests - control over how

many requests per second a certain client and/or all
clients together can execute;

• caching - responses to reduce the number of requests to
services;

• query logging - writing queries to the log;
metrics collection - collection of API usage metrics for

analysis.

B. Advantages and Disadvantages of API Gateways
The API gateway pattern has many positive aspects,

but it is clear that there are no perfect technologies, and
therefore the disadvantages of a gateway should also be
known.

The big advantage of using an API gateway is that it
encapsulates the internal structure of an application.
Instead of calling certain services, clients only need to
communicate with the gateway. Each client receives a
separate API, which in turn communicates with the
services, which reduces the number of requests between
the front-end and back-end. It also greatly simplifies the
client code.

On the downside, the API gateway will be another
component that needs to be developed, deployed, and
administered. In addition, there is a risk that the API
gateway will slow down the development of the
information system. It should be updated with every new
service deployed.

IV. OAUTH 2.0 PROTOCOL

A. OAuth 2.0 Characteristic

As discussed above, an API gateway can implement

edge functionalities. Two of these functionalities -
authentication and authorization - are directly related to
information system data security and to user data security
also. To implement them, we can use, for example, the
OAuth 2.0 protocol.

So, the OAuth 2.0 protocol is an open authorization
protocol (scheme) that allows a third party to provide
limited access to a user's protected resources without the
need to transfer to it (a third party) a login and password
[3]. It works by delegating user authentication to the
platform on which the user's account resides, allowing a
third-party application to access the user's account.

For example, there is a certain information system that
specializes in trading on the Internet and the management
of which, in order to increase sales, decided to resort to
the implementation of the OAuth 2.0 protocol. For the end
user, as a result, this decision will mean:

• there is no longer necessity to register in this
information system, and instead, you can use other
services, such as, for example, Facebook, Twitter or
Gmail, which may have a better protection degree;

• access to any data will be provided only after the user's
consent, otherwise the information system will not be
able to use the user's personal data.
This solution will bring impressive advantages for the

information system itself, because:
• there is no longer necessity to save passwords or other

personal data in the information system database if the
user prefers authentication on a third-party service
(Facebook, Twitter, Gmail, etc.);

• with the consent of the user, the information system
will be able to access some of the user's personal data
(name, surname, date of birth, etc.), on the basis of
which it will be able to make recommendations for
goods.
So, Protocol OAuth 2.0 defines four main roles:

• Owner of the resource. The owner of the resource is the
user who authorizes the application to access his
account. The application's access to the user account is
limited to the “scope” of the authorization rights
granted (for example, read or write access).

• Resource server. The resource server directly stores the
protected data of user accounts and often also acts as an
authorization server.

• Authorization server. The authorization server verifies
the authenticity of the information provided by the
user, and then creates authorization tokens for the
application, through which the application will access
the user data.

• Client. The client is the application that wants to access
the user's account. Before being accessed, the
application must be authorized by the user, and it must
be approved by the API.

Figure 3. Client request scheme for granting access to a user to his

protected resources.

Below it is described step-by-step the process
presented in the Figure 3:

Client

Authorization

server

Resource owner

 (user)

Resource server

Authorization request

Protected resource

Authorization grant

Authorization grant

Access token

Access token

21-22 October, 2021
Chisinau, Republic of Moldova Software Engineering & Cybersecurity

The 11th International Conference on
Electronics, Communications and Computing

https://doi.org/10.52326/ic-ecco.2021/SEC.03

209

1. The application asks the user for authorization to access
the resource server.

2. If the user authorizes the request, the application
receives an authorization grant.

3. The application requests an authorization token from
the authorization server by providing information about
itself and authorization from the user.

4. If the application is authenticated and the authorization
permission is valid, the authorization server generates
an access token for the application. The authorization
process is complete.

5. The application requests a resource from the resource
server, while providing an access token for
authentication.

6. If the token is valid or, for example, it has not expired
yet, the resource server provides the requested resource
to the application.
The actual order of the steps in the described process

may differ depending on the type of authorization you are
using, but the overall process will look like this. We will
discuss in more detail about the different types of
authorization permissions in section B.

So, the whole process described above means that
every request sent to the API gateway must be
accompanied by an access token. An example of an access
token string is presented below:
“eyJpc3MiOiJodHRwOi8vZ2FsYXhpZXMuY29tIiwiZXhw
IjoxMzAwODE5MzgwLCJzY29wZXMiOlsiZXhwbG9yZXI
iLCJzb2xhci1oYXJ2ZXN0ZXIiXSwic3ViIjoic3RhbmxleUB
hbmRyb21lZGEuY29tIn0”.

It would be difficult to counterfeit such a token. In
addition to all these, the token is often subjected to
symmetric encryption, and when it enters the API
gateway, it is decrypted and checked to see if it is valid. If
the token is valid, then the request is redirected to
services.

B. Authorization Permissions
In the previous section, the first four steps in the

process of granting user access to his protected resources
deal with the issue of creating an authorization permission
and an access token. The type of authorization permission
depends on the method used by the application to request
authorization, as well as what types of permission are
supported on the server side. There are four different
types, each of which is useful in specific situations:
• Authorization Code: is one of the most common type of

authorization permission, because it perfectly fits for
multilayered architecture applications, that is, where
the application source code and client secret are not
available to outsiders. This type is divided into two
main parts, that is, user requests for authorization will
be made to the authorization endpoint, and, after
successful authorization, requests for the token
endpoint will be made on the server side of the
application. Thus, for information systems using a
microservice architecture, this type is likely to be ideal;

• Implicit: used by applications where client secret
confidentiality cannot be guaranteed. This type is most
often used when the application does not have a
backend. Due to the lack of a backend, all authorization
requests will be made only to the authorization
endpoint;

• Resource Owner Password Credentials: with this type
of authorization permission, user provides the
application with his authentication data in the service
(login and password). The application, in turn, uses the
received user credentials to obtain an access token from
the service. This type of permission should only be
used when the user has trust in the application or, for
example, by applications that are part of the service
itself.

• Client Credentials: are used when the application
accesses the server, that is, user authentication data is
not used at all. Unlike the previous types of
authorization permission, in this type, the token that
will be created will not contain any user data at all. It
should be said that this type differs from others also in
that it does not have an authorization endpoint, but only
the token endpoint is used. This type is very convenient
to use when we need to perform operations in which
the user is not directly involved. An example of such an
operation can be a listener in the information system of
an organization, which checks daily if an employee was
hired or fired (in other words, for example, if an
account was created / deleted on the Outlook service).
This type can be used in conjunction with other types
of authorization permission.

CONCLUSIONS
Nowadays, when the world is closely associated with

information technology and, information is a key
resource, data security is becoming one of the key aspects
in the activity of each enterprise.

Today, microservices architecture is one of the most
popular architecture on developing an informational
system, and more and more often big organizations uses
this type of architecture. However, as mentioned earlier,
there are no ideal technologies, so information systems
using a microservice architecture must also be protected,
that can be done by implementing an API component such
as an API gateway.

In turn, an excellent decision when implementing an
API gateway will be the implementation of such a edge
function as authentication and authorization, which is
directly related to the security of the information system.
It is also necessary to assess the necesety to store some
sensitive data in the information system database, or it is
better to resort to implementing the OAuth 2.0 protocol.

REFERENCES
[1] Microservices documentation. https://microservices.io/index.html
[2] Chris Richardson, “Microservices Patterns”, 1st Edition, ISBN:

978-1617294549, Publisher: Manning Publications, 520 p., 2018.
[3] OAuth Working Group Specifications (https://oauth.net/specs/

