Organic-based thermoelectrics: Where we are and what challenges we are facing

Jens Pflaum

Experimental Physics, VI, University of Würzburg, 97074 Würzburg, Germany Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), 97074 Würzburg, Germany

ABSTRACT

Thermoelectric materials based on organic semiconductor compounds are considered a highly promising approach towards sustainable, cost- and energy-efficient recuperation of waste heat at moderate temperatures. First proof-of-concept devices have impressively confirmed this appraisal for p-type conducting polymers, showing thermoelectric figures of merit of up to zT = 0.26. However, fundamental challenges remain and need to be addressed in forthcoming research on this subject. In particular, the general improvement of the electrical conductivity, the implementation of air-stable n-type organic semiconductors as well as the abrogation of the mutual interrelation between the primary thermoelectric parameters constitute major objectives that need to be achieved for a successful application of organic materials in thermoelectric devices. For the case of strong donor-acceptor materials, in particular, the class of low-dimensional organic metals, I will illustrate how these requirements can be fulfilled and transferred to new thermoelectric materials.