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Abstract — An alternative approach to superdense 
coding of information in quantum computing is proposed on 
the basis of Schwinger’s two-boson representation of 
angular momentum. Since the effective spin S = 2n-1 - 1/2 
corresponds to the n-qubit system, this representation can 
be used in the quantum computing. Operators of the logical 
elements of the quantum circuit were found, performing 
superdense coding of information in the paired bosons 
representation. It is shown that for superdense coding of 
information, the results obtained in the spinor 
representation and in the representation of paired bosons 
coincide. For one-qubit systems, one of the two 
representations cannot be favored. In the case of n-qubit 
systems for n >> 1, the representation of paired bosons is 
probably more convenient for applications, since in this 
representation the explicit form of the Pauli operators X, Y, 
and Z does not depend on n. 

Keywords — entanglement, Bose fields, CNOT gate, 
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I. INTRODUCTION  
Development of the information technologies have 

reached an effective methods of storing and processing of 
information. There is an essential difference between 
classical and quantum treatment of information, which 
became relevant after R. Feynman put forward the idea of 
simulating physics with computers [1]. Unlike the 
classical bit (0, 1), the qubit |ψ⟩=α|0⟩+β|1⟩  (|0⟩ and |1⟩ 
denote basis vectors, α and β are complex numbers that 
satisfy the relation |α|2+|β|2 =1) geometrically is presented 
by the unit vector, which has its origin in the center of the 
Bloch sphere and end on the surface. There is an infinite 
set of points on the spherical surface and correspondingly 
any qubit may be in one from infinite set of states. It 
would seem that using only one qubit it is possible to store 
an infinite quantity of information. For this it is necessary 
to obtain a set of clones of one arbitrary state |ψ⟩ and carry 
out measurements of the state of each copy, then with the 
probability |α|2 the qubit will be found in the state |0⟩ and 
with the probability |β|2 it will be found in the state |1⟩. 
Since |α|2 and |β|2 can have infinitely many values, it 
would be possible to obtain infinitely many information 

encoded in one qubit. However, it is impossible due to 
existence of no-cloning theorem of Wootters and Zurek 
[2].  

Despite the restrictions caused by the no-cloning 
theorem, the number of publications in the field of 
quantum computing does not decrease, especially after the 
discovery of Deutsch–Jozsa [3], Shor [4] and Grover [5, 
6] quantum algorithms. In all these investigations the spin 
algebra formalism is used in view of its simplicity. 
However, the Bose operators algebra is not more 
complicated then spinor algebra. 

In this paper, we propose to implement the superdense 
coding of information using qubits and logical elements in 
the paired bosons (PB) representation. In Sect. II the 
logical elements given in the PB representation are found. 
The superdense coding of information in the paired 
bosons representation is theoretically studied in Sect. III. 
Concluding remarks are make in Sect. IV. 

II. THE QUBIT BASIS VECTORS AND LOGICAL 
ELEMENTS IN PAIRED BOSONS REPRESENTATION  

The basis vectors of any qubit traditionally are 
represented using the spin wave functions corresponding 
to an effective spin S = 1/2:  

0 1 / 2,1 / 2 , 1 1 / 2, 1 / 2   . (1) 

Therefore all logical operations, including superdense 
coding of information, are given in terms of spinorial 
algebra. On the other hand, spin operators and spin wave 
functions can be defined in the Schwinger’s paired bosons 
(PB) representation [7]. The superdense coding of 
information can be described in the PB representation, if 
needed for such investigation logical elements are given in 
the same representation. The rationale for this alternative 
approach is that in the spinor representation, the 
dimension of the matrices of spin operators increases with 
an increase in the number of qubits, while in the PB  
representation it does not depend on the number of qubits. 
In this case, all the specificity of multi-qubit system is 
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contained in the structure of spin wave functions in the PB 
representation. 
 Basis vectors of the qubit 

In the PB representation, the components |0⟩ and |1⟩ of 
the qubit (1) has the form 

1 2 1 2
0 1 0 , 1 0 1A B   , (2) 

where A+ and B+ are the creation operators of Bose 
fields 1 and 2, which satisfy the relation 

1/2 1/2U U A A B B I     , (3) 

where I is an unit operator given in two- dimensional 
space. 
 Pauli X, Y, and Z gates  

Let 1/2

A
U

B
 

  
 

 is an unitary spinor operator which 

satisfy the relation (3). 
Let us subject each of the Pauli matrices 
, ,x y  and z  to a unitary transformation using the 

spinor operators 1/2U   and 1/2U : 

1/2 1/2

1/2 1/2

1/2 1/2

,
( ) ,

x

y

z

U U A B B A X
U U i B A A B Y

U U A A B B Z







  

  

  

  

  

  

 (4) 

Thus, X, Y, and Z are Pauli operators in the paired 
bosons representation. In the spinor representation Pauli 
operators are unitary operators. Therefore, in the 
representation of paired bosons, they are also unitary.  

The eigenvectors of operators X, Y, and Z are • 

(|1⟩1|0⟩2±|0⟩1|1⟩2) for X, • (|1⟩1|0⟩2 ± i|0⟩1|1⟩2) for Y, and 

correspondingly |1⟩1|0⟩2  and |0⟩1|1⟩2 for Z operator.  
Unlike a one-qubit system, a system of n qubits is 
characterized by an effective spin S = 2n-1-1/2 [8]. In this 
case, the relationship (3) takes the form   

2S SU U A A B B SI     , (5) 

where I is the unit operator given in (2S+1) - dimensional 
space. 
 Hadamard logical element H 

Let us act by the operator H on the input qubit vector 

1 2 1 2
1 0 0 1    , (6) 

where α and β, as stated in Section I, are complex 
numbers that satisfy the condition 

2 2 1   .                                 (7) 

As a result of this action, we obtain 

1 2 1 2

1 2 1 2

1 ( ) ( )
2

( 1 0 0 1 )
1 ( ) 1 0 ( ) 0 1 .
2

H A A B B A B

b



 

  

      

  

    

   (8) 

The Hadamard operator H from (8) is a unitary 
operator since 

2 2

1 ( ), ,
2

(1/ 2)( )

H X Z H H

H H X Z iY iY I





  

    

   (9) 

The normalized eigenvectors of the operator H were 
calculated in [9] in the spinor representation: 

1 2

1 11 1,
4 2 2 4 2 2a b

 
   

    
    

, (10) 

where 2 1, 2 1.a b                                                            
Moving on from the spinor representation to the paired 
bosons representation, we obtain 

1 1 2 1 2

1 1 0 ( 2 1) 0 1 ,
4 2 2

      
 (11) 

2 1 2 1 2

1 1 0 ( 2 1) 0 1 .
4 2 2

      
 (12) 

Formulas (4) and (8) define the operators of the logical 
elements X, Y, Z, and H in the paired bosons 
representation.  

III. SUPERDENSE CODING OF INFORMATION IN PAIRED 
BOSONS REPRESENTATION  

Superdense coding is a quantum protocol, which 
allows increasing the information content using such a key 
resource of quantum systems as entanglement. The central 
idea is that two bits of classical information can be 
transferred with a single qubit participating in 
communication [10].   

Let us imagine that Alice intends to send two classical 
bits of information to Bob using qubits. Without relying 
on entanglement, Alice has to send two qubits in order to 
transfer two bits of information. However, the advantage  
appears provided Bob prepares two entangled qubits and 
sends only one of them to Alice. Alice encodes 
information in this qubit by applying one single- and one 
two-qubit gates (Hadamard- and CNOT-gates) and this 
qubit is then sent back to Bob. Bob performs Bell 
measurements of both qubits and extracts two classical 
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bits of information despite of the fact that only the single 
qubit has been utilized in quantum communication.  
It should be noted that the four entangled quantum states, 
discussed for the first time by Einstein, Podolsky and 
Rosen [11], are called EPR states. The properties of these 
states were studied by Bell [12], in connection with which 
they are also called Bell states. 

On the first step two qubits are prepared by the Bob in 
an entangled states. He initially start the two qubits in the 
basis state |1⟩1|0⟩2. He applied the Hadamard gate (H) to 
the first qubit to create superposition of the states |1⟩1|0⟩2 
and |0⟩1|1⟩2. He then applied CNOT gate UCN using the 
first qubit as a control and the second as a target (Fig. 1). 

 
Figure 1.  Quantum scheme described by the operator L = I ⊗ H • 

CNOT for obtaining the Bell state |00⟩. 
At the output of the quantum circuit shown in Fig. 1, 

after the original signal passes through the Hadamard gate 
H, and then through the CNOT gate, the entangled state is 
formed (the Bell or EPR state |00⟩): 

 00 1 2 1 2

1 3 0 0 3
2

   .      (13) 

Really, let the basis vectors |1⟩1|0⟩2 be fed to both 
inputs of the quantum circuit. Let us find the state vector 
after passing through the Hadamard gate:               

 

 

1 2 1 2

1 2 1 2

11 0 1 0
2

1 1 0 0 1
2

H X Z  


      (14) 

where X and Z are given in (4). We got a vector 
coming to the control input of the CNOT element. The 
base vector arrives at the controlled input of the CNOT 
element is |1⟩1|0⟩2. Thus, the input of the CNOT element 
receives the vector |⟩, which in the spinor representation 
has the form [3] 

 

 

1 0 1 0
2

1 0 0 1 0
2

    

  
      (15) 

In the paired bosons representation the vector |⟩ is 
converted to the form 

 1 2 1 2

1 3 0 1 2
2

   .      (16) 

The action of the CNOT operator on such an input 
vector results in the Bell sate |00⟩ from (19):  

 

 

 

1 2 1 2

1 2 1 2

01 3 0 1 2
02

1 3 0 0 3
2

CN

I
U

X


 
   

 



      (17) 

If basis vectors |1⟩1|0⟩2 and |0⟩1|1⟩2 are applied to the 
control and controlled inputs of the quantum circuit, then 
at the output of the circuit, after passing through the 
Hadamard and CNOT gates, another Bell state will be 
formed: 

 01 1 2 1 2

1 1 2 2 1
2

   .      (18) 

In a similar way, one can obtain the remaining two 
Bell states |10⟩  and |11⟩, if in the first case the basis 
vectors |0⟩1|1⟩2 and |1⟩1|0⟩2 are fed to the control and 
controlled inputs of the quantum circuit, and in the second 
case two |0⟩1|1⟩2 are fed to both inputs: 

 10 1 2 1 2

1 3 0 0 3
2

   ,      (19) 

 11 1 2 1 2

1 2 1 1 2
2

   .      (20) 

All four cases (13), (18) - (20) can be written briefly in 
the form 

  ; , 0,1ab I H CNOT ab a b     .      (21) 

The end goal is for Alice to send two classical bits of 
information to Bob using one qubit. But before she does 
that, she needs to apply a set of quantum gates to her 
qubit, depending on which two bits of information she is 
going to send. Alice encodes each pair of consecutive bits 
ab using the Lab operator and acts on her pair qubit. She 
matches pairs 00, 01, 10, and 11 with the operators L00 =I, 
L01 = X, L10 = Z, and L11 =iY, where I, X, Z, and Y are 
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defined by (3) and (4). Alice can only affect her pair qubit. 
Therefore, Alice's influence on any pair ab is described by 
the operator Lab ⊗ I. Taking into account (13), the 
following relations can be obtained: 

   

   

   

   

00 00 001 2 1 2

01 00 011 2 1 2

10 00 101 2 1 2

11 00 111 2 1 2

1 3 0 0 3 ,
2

1 2 1 1 2 ,
2

1 3 0 0 3 ,
2

1 2 1 1 2
2

L I

L I

L I

L I

 

 

 

 

   

   

   

   

   (22) 

Thus,  

  00 ; , 0,1ab abL I a b    .      (23) 

After encoding the information, Alice sends her qubit 
to Bob. If she sends Bob a sequence of ab qubits, then 
Bob has an entangled pair of qubits in the Bell state |ab⟩. 
To decode this signal, it is necessary to apply a quantum 
circuit presented on the Figure 2. 

 
Figure 2.  Deconding scheme of the method of superdense coding 

of information 

The action of the decoding operator on the entangled 
Bell state |ab⟩ leads to the result. The action of the 
decoding operator on the entangled Bell state |ab⟩ leads 
to the result 

  1( ) abI H CNOT a b ab     .      (24) 

Taking into account the unitarity properties of the 
operators I⊗H and CNOT, we finally find: 

 
0

0 ab

I
I H ab

X


 
   

 
.      (25) 

CONCLUSIONS 
 
1. Traditionally, in quantum informatics the qubits and 
logical elements are treated in terms of spinor algebra. 

Along with this, quantum computing can be performed in 
the paired bosons representation. 
2. Basic gates were found in the paired bosons 
representation. 
3. Superdense coding of information in the representation 
of paired bosons was performed. 
4. Superdense coding of information is closely related 
with quantum teleportation. To avoid confusion we need 
to clarify the difference. Superdense coding is a 
procedure that allows someone to send two classical bits 
to another party using just a single qubit of 
communication. Quantum teleportation is a process by 
which the state of qubit (|⟩) can be transferred from one 
location to another, using two bits of classical 
communication and a Bell pair. We can say that 
teleportation is a process that destroys the quantum state 
of a qubit in one location and recreate it on a qubit at 
distant location. Thus, the teleportation protocol is a 
flipped version of the superdense coding protocol.   
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