EXTRACTION OF SOME BIOLOGICALLY ACTIVE POLYPHENOLS FROM WALNUT SEED SEPTUM: MATHEMATICAL MODELLING

Alexei Baerle, ORCID: 0000-0001-6392-9579 Iuliana Sandu^{*}, ORCID: 0000-0003-1266-3154

Technical University of Moldova, 168 Stefan cel Mare Bd., Chisinau, Republic of Moldova *Email: iuliana.sandu@tpa.utm.md

Three-factor two-level fractional experimental design, FFE 2^{3-1} was used in order to evaluate the influence of Ethyl Alcohol (X₁), sodium carbonate / citric acid, H₃Cit (X₂) and polygalacturonase enzyme, PGU (X₃) to the extraction of biologically active compounds (BACs) from the septum. Septum samples, 2 g each, were extracted with 50mL of solution, prepared according to Table 1.

	Table 1. Extraction conditions planning matrix: encoded and real coordinat						
Nexp.	X ₁ , EtOH, % (v)		X_2 , Na ₂ CO ₃ / H ₃ Cit, % (m)			X3, PGU, % (m)	
1	-	20	-	H ₃ Cit	0.05	+	0.01%
2	+	40	-	H ₃ Cit	0.05	-	0.00%
3	-	20	+	Na ₂ CO ₃	0.05	-	0.00%
4	+	40	+	Na ₂ CO ₃	0.05	+	0.01%

Table 1. Extraction conditions planning matrix: encoded and real coordinates

Extracted BAC per 100g of septum, mg/100g, of Gallic Acid (*Gal*), Catechin (*Cat*), Epicatechin (*Epi*), Casuarictin (*Cas*) and Ellagic Acid (*Ell*), were determined by reversed-phase HPLC with Photo Diode Array detection on C₁₈-column. Following regressions were calculated:

 $Gal = 8.4X_0 - 3.0X_1 - 2.8X_2 + 3.6X_3$ $Cat = 107X_0 + 17X_1 - 8X_2 + 11X_3$ $Epi = 27.5X_0 - 7.5X_1 - 14.0X_2 + 7.8X_3$ $Cas = 22.4X_0 + 2.8X_1 + 0.7X_2 - 4.2X_3$ $Ell = 32.6X_0 + 2.2X_1 + 4.8X_2 - 6.6X_3$

The regressions show that the factors under research, have ambiguous effects on the extraction of biologically active compounds (*BACs*) from the septum. Thus, high concentrations of ethyl alcohol reduce the yield of *Gal*, but increase the extractivity of hexahydroxydiphenic acid derivatives (*Cas* and *Ell*). Alkaline medium (Na₂CO₃) reduce the yields of *Gal*, *Cat* and *Epi*, but increase the yields of *Cas* and *Ell*. Finally, the effects of polygalacturonase are also grouped according to BACs polarity: enzyme facilitating the release of more polar BACs.

The totality of the factors influence can be explained by the interaction of BACs with different polarity with the biopolymer (cellulose-lignin) matrix of the septum. The most acceptable conditions for the extraction of all biologically active substances at once are close to the center of the experiment: ethanol-water mixture 30:70 containing H₃Cit (~ 0.025%) and PGU (~ 0.005%).

Keywords: Catechin, Casuarictin, Ellagic Acid, Epicatechin, Gallic Acid, HPLC, Regressions

Acknowledgments. The authors would like to thank the Project 2SOFT/1.2/83 *Intelligent valorisation of agro-food industrial wastes*, funded by the European Union, within the program Cross border cooperation Romania - Republic of Moldova 2014-2020.