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Abstract

Let an indirectly measurable variable Y be represented as a
function of finite number of directly measurable variables X1,
X2, ..., Xn. We introduce maximum absolute and relative inac-
curacies of second order of Y – this idea is a continuation of our
research of a new principle for representing the maximum inaccu-
racies of Y using the inaccuracies of X1, X2, ..., Xn. Using inaccu-
racies of second order we determine the maximum inaccuracies of
indirectly measurable variable Y with quadratic approximation
which gives their values more precisely. We give algorithmically
an easily applicable method for determining their numerical val-
ues. The defined by us maximum inaccuracies of second order
give the opportunity for more precise determination of the inac-
curacy when measuring indirectly measurable variables.

Keywords: indirectly measurable variable; maximum inac-
curacy; Taylor series expansion.

1 Introduction

When conducting an experiment each measurement has imperfections
which cause an error in the obtained result for the given measurement.
We believe that it is more accurate not to speak of an error but of
an inaccuracy of the measurement – we consider the accuracy of the
measurement as a quality which can be represented quantitatively.
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Maximum Inaccuracies of Second Order

Following [1], we assume that a principle of measurement is the
theoretical basis of the measurement; a method of measurement is the
logical chain of operations in order to conduct the measurement; and a
procedure of measurement is the set of operations described in details
and specifics which are used in order to conduct the concrete measure-
ments given by the corresponding method of measurement.

Let X be a directly measurable variable which in k observations of
an experiment assumes values x1, x2, ..., xk whose arithmetic mean is

x̄ =
1
k

k∑

i=1

xi. The measurement of the values of X is accompanied by

inaccuracies which by their way of expression are absolute or relative
[2], [3], [4], [5], [6].

The absolute inaccuracy ∆X is represented in the unit of the mea-
sured variable. The value of the absolute inaccuracy at the i-th obser-
vation is ∆xi = xi − x̄.

The relative inaccuracy
∆X

X
is a dimensionless variable. The value

of the relative inaccuracy at the i-th observation is
∣∣∣∣
∆xi

xi

∣∣∣∣ =
∣∣∣∣
xi − x̄

xi

∣∣∣∣
(xi 6= 0).

By their character of change the inaccuracies are random or sys-
tematic [2], [3], [4], [5], [6]. The nature and physical meaning of the
random and systematic inaccuracies of a measurement are different.

The random (or stochastic) inaccuracy is a result of either unknown,
or unforeseeable, or known variable time and/or space effects of influ-
encing variables. It is assumed that under fixed conditions of the exper-
iment (conducted using the same methods and the same utensils) this
inaccuracy is volatile and is not regularly altered. It can have different
values with each measurement. Although the random inaccuracy of
the result of a measurement cannot be compensated, usually it can be
reduced by increasing the number of observations.

The systematic inaccuracy is a result of known constant influences
on the environment of the experiment. It is assumed that under fixed
conditions of the experiment (conducted using the same methods and
with the same utensils) this inaccuracy is constant or obeys certain reg-
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ularities. It either has equal values under all measurements, or these
values can be determined experimentally, or they can be calculated.
The systematic inaccuracy similarly to the random one cannot be elim-
inated but can often be reduced.

The inaccuracy of the result of a measurement shows the lack of
knowledge regarding the exact value of the measured variable. Thus,
the result of a measurement, even after increasing the number of ob-
servations is still only an approximation of the value of the measured
variable.

Practically, there are many different sources of inaccuracy in a mea-
surement, including:

• incomplete definition or incomplete modelling of the measured
variable;

• approximations or assumptions used in the method or in the mea-
surement procedure;

• inadequate knowledge regarding the influence of the environment
on the measurement;

• deviation when reading the utensils or the presence of distinction
threshold for the values of the utensils;

• inaccurate values of constants or other parameters given by mea-
surement standards, reference materials or other external sources.

These sources are not necessarily independent and some of them
could introduce inaccuracies in others.

Let us also point out that the categorisation of the inaccuracies
as ’random’ and ’systemic’ can also be ambiguous. For example, a
’random’ inaccuracy in one measurement can become a ’systematic’
inaccuracy in another measurement, in which the result of the first one
is used as input data.

Let Y be an indirectly measurable variable which depends explicitly
on n directly measurable variables which are modelled (with the help
of measurement utensils or methods) by n real independent variables
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X1, X2, ..., Xn. Let us denote with f the real function with arguments
X1, X2, ..., Xn which helps represent Y , i.e. Y = f(X1, X2, ..., Xn).
Moreover, let f be defined in a given neighbourhood of the point
(X1, X2, ..., Xn) and in this neighbourhood there are continuous par-
tial derivatives up to order m (m ∈ N) with respect to all its vari-
ables. Then [7], [8] we can expand f in Taylor series around the point
(X1, X2, ..., Xn):

f(X1 + dX1, X2 + dX2, ..., Xn + dXn)− f(X1, X2, ..., Xn) =

=
n∑

i=1

∂f

∂Xi
dXi +

1
2!

n∑

i,j=1

∂2f

∂Xi∂Xj
dXidXj + ... + Rm.

(1)

In (1) all the partial derivations are calculated in the point (X1, X2, ...,
Xn) and the remainder Rm is calculated in the point (X1 + θdX1,
X2 + θdX2, ..., Xn + θdXn), where 0 < θ < 1, and in its different forms
it satisfies certain conditions [7], [8].

In order to determine the maximum inaccuracies of an indirectly
measurable variable the primarily used methods are statistical. In [9],
[10], [11] we developed a new method for studying in linear approxi-
mation the maximum inaccuracies of an indirectly measurable variable
Y = f(X1, X2, ..., Xn). Using it we represent the maximum inaccu-
racies as hyperplanes in metric spaces and define dimensionless scale
describing the quality of an experiment.

The purpose of the current paper is to continue these studies by
introducing the maximum inaccuracies of the second order of f based
on the expansion (1). Using them we determine the maximum inac-
curacies of the indirectly measurable variable Y of quadratic approxi-
mation. The quadratic approximation gives the values of inaccuracies
more precisely. Moreover, we give in algorithmic form an easily applica-
ble method for determining their numerical values and give a practical
example showing its application.

Our new method for finding the maximum inaccuracies of indirectly
measureable variable adds to and develops the classical method. The
main advantages of our method are the high precision and applicability
to wider class of functions.
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2 Principle for representing in linear approxi-
mation the maximum inaccuracies of an in-
directly measurable variable

Let Y = f(X1, X2, ..., Xn) be an indirectly measurable variable de-
pending on the directly measurable variables X1, X2, ..., Xn. More-
over, let us have ki observations of the directly measurable variable Xi

in a given experiment, when the values, respectively, xi1, xi2, ..., xiki

(i = 1, 2, ..., n) are measured. The value of the partial deriva-

tive
∂f

∂Xi
calculated at the m-th observation we denote with

∂f

∂xim
(m = 1, 2, ..., ki) and the arithmetic mean of the absolute values of

the partial derivative
∂f

∂Xi
(i = 1, 2, ..., n) we denote with

∣∣∣∣
∂f

∂xi

∣∣∣∣ =

=
1
ki

ki∑

m=1

∣∣∣∣
∂f

∂xim

∣∣∣∣. Similarly, we denote with

∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ =
1
ki

ki∑

m=1

∣∣∣∣
xim

f
· ∂f

∂xim

∣∣∣∣

the arithmetic mean of the absolute values of
Xi

f
· ∂f

∂Xi
(i = 1, 2, ..., n).

Then according to [9] the maximum absolute inaccuracy (MAI) of
the indirectly measurable variable Y can be given in linear approxima-
tion as a function

∆1Y = ∆1f =
n∑

i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣ · |∆Xi| (2)

of the absolute values of the absolute inaccuracies ∆X1, ∆X2, ...,∆Xn

of the directly measurable variables X1, X2, ..., Xn. Moreover, the co-

efficients
∣∣∣∣
∂f

∂x1

∣∣∣∣,
∣∣∣∣
∂f

∂x2

∣∣∣∣, ...,
∣∣∣∣

∂f

∂xn

∣∣∣∣ we assume to be constants (within the

experiment), and the absolute inaccuracies ∆X1, ∆X2, ...,∆Xn them-
selves we assume to be variables.

28



Maximum Inaccuracies of Second Order

According to [11] the maximum relative inaccuracy (MRI) of the
indirectly measurable variable Y can be given in linear approximation
as a function

∆1Y

Y
=

∆1f

|f | =
n∑

i=1

∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ ·
∣∣∣∣
∆Xi

Xi

∣∣∣∣ (3)

of the relative inaccuracies
∆X1

X1
,
∆X2

X2
, ...,

∆Xn

Xn
of the directly mea-

surable variables X1, X2, ..., Xn. Moreover, the coefficients
∣∣∣∣
x1

f
· ∂f

∂x1

∣∣∣∣,
∣∣∣∣
x2

f
· ∂f

∂x2

∣∣∣∣, ...,
∣∣∣∣
xn

f
· ∂f

∂xn

∣∣∣∣ are assumed to be constants (within the ex-

periment) and the relative inaccuracies
∆X1

X1
,
∆X2

X2
, ...,

∆Xn

Xn
them-

selves are assumed to be variables.

In the classical theory of errors the coefficients
∣∣∣∣

∂f

∂X1

∣∣∣∣ ,

∣∣∣∣
∂f

∂X2

∣∣∣∣ , ...,
∣∣∣∣

∂f

∂Xn

∣∣∣∣ are called coefficients of influence of the absolute inaccuracies

∆X1, ∆X2, ...,∆Xn in MAI [5]. Similarly, we call the coefficients∣∣∣∣
X1

f
· ∂f

∂X1

∣∣∣∣ ,

∣∣∣∣
X2

f
· ∂f

∂X2

∣∣∣∣ , ...,

∣∣∣∣
Xn

f
· ∂f

∂Xn

∣∣∣∣ coefficients of influence of the

relative inaccuracies
∆X1

X1
,
∆X2

X2
, ...,

∆Xn

Xn
in MRI.

Theoretically, a real function can converge to infinite values. What-
ever the experiment, however, the measurement utensils measure phys-
ically real and not mathematically modelled variables thus showing
that the measured values are always finite. The ideas of a jump in the
behaviour of a real variable or of its possible infinite value are only
theoretical (model) – they are sensible abstractions when describing
the objective reality. This is why however fast the change of a function
describing the behaviour of a real variable is, it is never jumpy but
rather smooth for every small enough time interval. Therefore, given
a real experiment the values of the coefficients of influence change in
a small enough interval and thus can be estimated accurately enough
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using their arithmetic mean. This is why the representations (2) and
(3) are reasonable and correct.

3 Representation in quadratic approximation
the maximum inaccuracies of an indirectly
measurable variable

Let Y = f(X1, X2, ..., Xn) be an indirectly measurable variable which
is defined as in (1). When nonlinearity of f is considerable in order
to determine the numerical values of the maximum inaccuracies of Y
more adequately we consider the expansion of the function in Taylor
series to terms of the second order.

Then we can determine MAI of Y using

∆Y =
n∑

i=1

∣∣∣∣
∂f

∂Xi

∣∣∣∣ · |∆Xi|+ 1
2

n∑

i,j=1

∣∣∣∣
∂2f

∂Xi∂Xj

∣∣∣∣ · |∆Xi| · |∆Xj | ,

and MRI of Y using

∆Y

Y
=

1
Y




n∑

i=1

∣∣∣∣
∂f

∂Xi

∣∣∣∣ · |∆Xi|+ 1
2

n∑

i,j=1

∣∣∣∣
∂2f

∂Xi∂Xj

∣∣∣∣ · |∆Xi| · |∆Xj |

 .

Let

∆2Y = ∆2f =
n∑

i,j=1

∣∣∣∣
∂2f

∂xi∂xj

∣∣∣∣ · |∆Xi| · |∆Xj | (4)

and
∆2Y

Y
=

∆2f

|f | =
n∑

i,j=1

∣∣∣∣
xixj

f
· ∂2f

∂xi∂xj

∣∣∣∣ ·
∣∣∣∣
∆Xi

Xi

∣∣∣∣ ·
∣∣∣∣
∆Xj

Xj

∣∣∣∣ . (5)

MAI and MRI, defined respectively in (2) and (3), we call maximum
absolute inaccuracy of first order and maximum relative inaccuracy of
first order. The variables, defined respectively in (4) and (5), we call
maximum absolute inaccuracy of second order and maximum relative
inaccuracy of second order.
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So with quadratic approximation MAI ∆Y of the indirectly mea-
surable variable Y can be presented in the form

∆Y = ∆1Y +
1
2
∆2Y, (6)

and MRI
∆Y

Y
of Y – in the form

∆Y

Y
=

∆1Y

Y
+

1
2

∆2Y

Y
. (7)

Let us point out that when needed one could introduce similarly
MAI and MRI of n-th order for an arbitrary natural number n (n > 2).
Moreover, with n-th approximation MAI ∆Y of the indirectly measur-

able variable Y will be of the form ∆Y = ∆1Y +
1
2
∆2Y + ... +

1
n!

∆nY

and MRI
∆Y

Y
of Y will be of the form

∆Y

Y
=

∆1Y

Y
+

1
2

∆2Y

Y
+ ... +

+
1
n!

∆nY

Y
.

4 Method for determining the numerical val-
ues of the maximum inaccuracies of second
order of an indirectly measurable variable

Let us have ki observations made in an experiment for the directly
measurable variables X1, X2, ..., Xn as xi1, xi2, ..., xiki are the values
measured for the variable Xi (i = 1, 2, ..., n).

In [9], [10], [11] we give a method for determining the numerical val-
ues of the maximum inaccuracies of first order of an indirectly measur-
able variable. In this section we further develop this method similarly
for inaccuracies of second order.

The determining of the numerical value of MAI of second order of
an indirectly measurable variable as logical sequence of operations can
be described algorithmically in the following steps:
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• For m = 1, 2, ..., ki, l = 1, 2, ..., kj the values of the coefficients∣∣∣∣
∂2f

∂Xim∂Xjl

∣∣∣∣ for all i, j = 1, 2, ..., n and the absolute inaccuracies

∆X1m,∆X2m, ..,∆Xnm are calculated.

• The arithmetic means
∣∣∣∣

∂2f

∂xi∂xj

∣∣∣∣ =
1

kikj

ki∑

m=1

kj∑

l=1

∣∣∣∣
∂2f

∂xim∂xjl

∣∣∣∣ of the

absolute values of the partial derivatives for all i, j = 1, 2, ..., n
are found.

• By (4), given constant values of
∣∣∣∣

∂2f

∂xi∂xj

∣∣∣∣, we get the represen-

tation of MAI ∆2Y of second order of the indirectly measurable
variable Y .

• The numerical value ∆2y of MAI ∆2Y is determined by applying
∆2y = ∆2Y

(
∆x1, ∆x2, ...,∆xn

)
.

Similarly, the method can be applied for determining the numerical

value
∆2y

y
of MRI

∆2Y

Y
of the indirectly measurable variable Y .

Having determined ∆1Y , ∆2Y and
∆1Y

Y
,

∆2Y

Y
, the numerical val-

ues of the quadratic approximations of the maximum inaccuracies ∆Y

and
∆Y

Y
can be determined according to formulas (6) and (7).

The most substantial difference between the maximum inaccuracies
of first and of second order is that with respect to its arguments the in-
accuracies of first order are additive, whereas the inaccuracies of second
order are also multiplicative. This multiplicativity of the introduced
by us instrument for calculation shows that the inaccuracies of second
order are more sensitive than the inaccuracies of first order. The main
contribution in the numerical value of the maximum inaccuracies is
given by the inaccuracies of first order. However, when these values
are practically identical, the inaccuracies of second order can give ad-
ditional and more precise information regarding which experiment is
more accurate.
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In [11] it is described how the method for determining the numerical
values of the maximum inaccuracies of first order of an indirectly mea-
surable variable can also be applied to continuous functions which do
not have first derivative with respect to some of its arguments in given
points. Similarly, this method can also be applied in order to determine
the numerical values of the maximum inaccuracies of second order and
to functions which have continuous first derivatives but do not have a
second derivative with regards to some of its arguments in given points.

Indeed, let for some i, 1 ≤ i ≤ n, the derivative
∂f

∂Xi
(X1, X2, ..., Xn)

not be differentiable with respect to its argument Xk, 1 ≤ k ≤ n, in
given points akj but is continuous with respect to this argument in
akj , where the index j assumes a finite number of values. Then the

derivative
∂2f

∂Xi∂Xk
does not exist in the points akj . For

∂f

∂Xi
, how-

ever, there are both right and left derivatives when Xk → akj . Then
the representation of MAI (respectively, MRI) of second order in the
formula (4) (respectively, formula (5)) can be determined by the limit

for which the coefficient
∣∣∣∣

∂2f

∂Xi∂Xk

∣∣∣∣ (respectively,
∣∣∣∣
XiXk

f

∂2f

∂Xi∂Xk

∣∣∣∣) has

greater value of the two. (Let us point out that the values of the two

limits have to be different, otherwise
∂f

∂Xi
would be differentiable with

respect to Xk.)

5 Example

It is known [3] that the temperature coefficient αt of the electrical
resistance of the metal of the resistance thermometer given tempera-
ture t can be determined from the formula Rt = Rt0 [1 + αt(t − t0)].
The variables Rt and Rt0 are respectively the resistance of the resis-
tance thermometer given temperature t and given initial temperature
t0. Thus the coefficient αt can be represented as an indirectly measur-
able variable depending on the directly measurable variables t, t0, Rt,
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Rt0 as follows:

αt =
1

t− t0

(
Rt

Rt0

− 1
)

.

In two different experiments, each of which has ten observations, the
resistance of a platinum resistance thermometer Pt100, Type 404, given
certain temperature has been measured and the data has been sum-
marised in Table 1. The values of the arithmetic mean of the tempera-

Table 1. Values of the temperature coefficient αt of resistance ther-
mometer Pt100, Type 404, given certain values of the temperature t
and the resistance Rt

First experiment Second experiment
Observ. t Rt αt Observ. t Rt αt

No. [C] [Ω] [C−1] No. [C] [Ω] [C−1]
1 24.9 109.69 0.00374 1 24.9 109.7 0.003746
2 24.9 109.69 0.00374 2 24.9 109.7 0.003746
3 24.9 109.69 0.00374 3 24.9 109.7 0.003746
4 25 109.73 0.003741 4 24.9 109.7 0.003746
5 25 109.73 0.003741 5 25 109.73 0.003741
6 25 109.73 0.003741 6 25 109.73 0.003741
7 25 109.73 0.003741 7 25 109.73 0.003741
8 25.1 109.77 0.003741 8 25 109.73 0.003741
9 25.1 109.77 0.003741 9 25.1 109.76 0.003735
10 25.1 109.77 0.003741 10 25.1 109.76 0.003735

ture coefficient αt for the both experiments, based on the data from Ta-
ble 1, are respectively αt(1) = 0.003741C−1 and αt(2) = 0.003742C−1.
In order to find out which of the two values is calculated with better
accuracy we will compare their respective MRI.

According to (2) in linear approximation MAI of αt is

∆1αt =
∣∣∣∣
∂αt

∂t

∣∣∣∣ · |∆t|+
∣∣∣∣
∂αt

∂t0

∣∣∣∣ · |∆t0|+
∣∣∣∣
∂αt

∂Rt

∣∣∣∣ · |∆Rt|+
∣∣∣∣

∂αt

∂Rt0

∣∣∣∣ · |∆Rt0 | .

The absolute inaccuracies ∆t0 and ∆Rt0 are in fact the systematic
inaccuracies with which the thermometer and the ohmmeter used in the
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experiments are calibrated to work. The actual contribution of these
inaccuracies to MAI ∆1αt is negligibly small, thus we can assume that
∆t0 = 0 and ∆Rt0 = 0. Then

∆1αt =
∣∣∣∣
∂αt

∂t

∣∣∣∣ · |∆t|+
∣∣∣∣
∂αt

∂Rt

∣∣∣∣ · |∆Rt| ,

i.e.

∆1αt =
∣∣∣∣

1
(t− t0)2

(
Rt

Rt0

− 1
)∣∣∣∣ · |∆t|+

∣∣∣∣
1

(t− t0)
· 1
Rt0

∣∣∣∣ · |∆Rt| .

Let us determine the accuracy of the first experiment by determin-
ing the numerical value of MAI ∆1αt. It is known that given an initial
temperature t0 = 10oC the value of the resistance of the resistance ther-
mometer is Rt0 = 103.9Ω. Then the representation of MAI (precise to
three decimal digits) is ∆1αt = 2.494× 10−4 |∆t|+ 6.416× 10−4 |∆Rt|.
Then, according to Section 4, the value of MAI ∆1αt in the first ex-
periment is ∆1αt(1) = 3.036 × 10−6C−1. This allows us to determine

the value of MRI of the first experiment
∆1αt

αt
(1) = 0.008. (Let us

point out that the value of MRI
∆1αt

αt
can also be found directly from

formula (3).)
Similarly, for the second experiment the representation of MAI is

∆1αt = 2.558× 10−4 |∆t|+ 6.425× 10−4 |∆Rt|, its value is ∆1αt(2) =

= 2.871× 10−6C−1 and the value of MRI is
∆1αt

αt
(2) = 0.008.

Due to
∆1αt

αt
(1) =

∆1αt

αt
(2) = 0.008 we cannot make a conclusion

for the accuracy of the measurement of the temperature coefficient αt

by using MRI of first order. Thus we will use MRI of second order.
According to (3) MAI ∆2αt of second order has the following form:

∆2αt =
∣∣∣∣

2
(t− t0)3

(
Rt

Rt0

− 1
)∣∣∣∣ · |∆t|2 +

∣∣∣∣
1

(t− t0)2Rt0

∣∣∣∣ · |∆t| · |∆Rt| .

35



K. Kolikov, Y. Epitropov, A. Corlat, G. Krastev

The corresponding representations of MAI of second order for the first
and the second experiment are

∆2αt(1) = 3.345× 10−5 |∆t|2 + 4.278× 10−5 |∆t| · |∆Rt|

and

∆2αt(2) = 3.335× 10−5 |∆t|2 + 4.289× 10−5 |∆t| · |∆Rt| .

Thus, their numerical values are, respectively, ∆2αt(1) = 1.82 × 10−7

and ∆2αt(2) = 1.818×10−7. Therefore, the numerical values of MRI of

second order are
∆2αt

αt
(1) = 4.866×10−5 and

∆2αt

αt
(2) = 4.859×10−5.

As
∆2αt

αt
(2) <

∆2αt

αt
(1), then the second experiment has smaller

inaccuracy with respect to the first one. Therefore, the more accurate
value of the temperature coefficient of the two experiments is equal to

αt(2)±
(

∆1αt(2) +
1
2
∆2αt(2)

)
= 0.003742± 2.962× 10−6C−1.

6 Discussion

The suggested by us principle for representation of the maximum in-
accuracies of an indirectly measurable variable and method for deter-
mining their numerical values are applicable and important to each
and every experimental field of science in which the indirectly measur-
able variable can be represented as a function of directly measurable
variables. Moreover:

Our principle is applicable to different fields of science where ex-
periments are conducted, to different mathematical models, to differ-
ent kinds of measurements (with different utensils and using different
methods) and to different types of input data used in the measurement.

In the currently used methods the value of the maximum inaccuracy
of an indirectly measurable variable is found as an arithmetical mean
of the calculated values of all of its observations of the experiment. Our
method is adequate to the objective reality as we calculate the value
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of the maximum inaccuracy of the indirectly measurable variable as a
function of the arithmetic means of its arguments.

Our method can be applied to other experiments modelled by func-
tions which have continuous first derivatives but do not have second
derivatives with respect to some of its arguments in given points. Us-
ing it one can practically easily calculate the numerical value of the
maximum inaccuracy of a given experiment.

In [9], [10], [11] we introduced spaces and hyperplanes of the inac-
curacies of first order. Using them we define a scale for determining
the quality of an experiment [11]. This method can also be applied to
the inaccuracies of second order.

The maximum inaccuracies of second order are more sensitive than
the inaccuracies of first order as they are multiplicative and not only
additive. This is why they give an opportunity for more precise deter-
mination of the inaccuracy when measuring the indirectly measurable
variable. This is especially important for the experiments requiring
excellent accuracy when determining the results.

7 Conclusion

In the current paper we continue our research on determination of the
maximum inaccuracy of an indirectly measurable variable by intro-
ducing MAI and MRI of second order. We show how the introduced
by us method can be applied to determine the numerical values of
the maximum inaccuracy of second order and to functions which have
continuous first derivatives but do not have a second derivative with
respect to some of its arguments in given points.

The determination of MAI and MRI with quadratic approxima-
tion gives more accurate results for the limits in which an indirectly
measurable variable is determined.

The natural processes are described by real and continuous func-
tions. However, in the mathematical models, describing these pro-
cesses, this may not be the case. This is why we should point out that
when dealing with such models our principle and method may not be
applicable.
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