Comparison of the maximal inaccuracies for two experiments

Kiril Kolikov, Radka Koleva, Yordan Epitropov, Andrei Corlat

Abstract

In this paper we refine and generalize some previous our results on the inaccuracy (error) theory. We define conditions, which characterize different types of functions. Via these functions an indirectly measurable variable Y can be analytically represented. We also present criteria for comparison of the maximal absolute and relative inaccuracies of the indirectly measurable variable Y in the first and in the second order for two experiments. We correct some of our previous conclusions regarding the application of the dimensionless scale for evaluation of the quality of an experiment. Furthermore we give two numerical contra examples.

Keywords: indirectly measurable variable; maximal absolute inaccuracy; maximal relative inaccuracy; dimensionless scale.

1 Introduction

Let an indirectly measurable variable Y be represented as a function of a finite number of directly measurable variables $X_{1}, X_{2}, \ldots, X_{n}$, i.e. $Y=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and let f be a differentiable function of each of its real variables. If in an experiment we have k number of observations $x_{i 1}, x_{i 2}, \ldots, x_{i k}$ of the directly measurable varialbe $X_{i} \quad(i=1,2, \ldots, n)$, then it is assumed that the arithmetic mean $\bar{x}_{i}=\frac{1}{k} \sum_{m=1}^{k} x_{i m}$ is the most probable (the most reliable) value of X_{i}. We denote $\left|\Delta x_{i m}\right|=$ $\left|x_{i m}-\bar{x}_{i}\right|, \quad i=1,2, \ldots, n, \quad m=1,2, \ldots, k$.
(C) 2017 by K. Kolikov, R. Koleva, Y. Epitropov, A. Corlat

The value of the maximal absolute inaccuracy $\Delta^{1} Y$ of an indirectly measurable variable Y according to the classical method is

$$
\begin{equation*}
\Delta^{1} Y=\frac{1}{k} \sum_{m=1}^{k} \sum_{i=1}^{n}\left|\frac{\partial f}{\partial X_{i}}\left(x_{1 m}, \ldots, x_{n m}\right)\right|\left|\Delta x_{i m}\right| \tag{1}
\end{equation*}
$$

and the value of the maximal relative inaccuracy of Y is $\frac{\Delta^{1} Y}{Y}$, where $\Delta^{1} Y$ is defined by (1) and

$$
\begin{equation*}
Y=\frac{1}{k} \sum_{m=1}^{k}\left|f\left(x_{1 m}, \ldots, x_{n m}\right)\right| \tag{2}
\end{equation*}
$$

$[6,7]$.
The value of the maximal absolute inaccuracy $\Delta^{1} Y$ according to our method [1] is

$$
\begin{equation*}
\Delta^{1} Y=\sum_{i=1}^{n} A_{i}\left|\Delta X_{i}\right| \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i}=\frac{1}{k} \sum_{m=1}^{k}\left|\frac{\partial f}{\partial X_{i}}\left(x_{1 m}, \ldots, x_{n m}\right)\right|, i=1, \ldots, n \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\Delta X_{i}\right|=\frac{1}{k} \sum_{j=1}^{k}\left|\Delta x_{i j}\right|, i=1,2, \ldots, n \tag{5}
\end{equation*}
$$

The value of the maximal relative inaccuracy $\frac{\Delta^{1} Y}{Y}$ according to our method $[2,3]$ is

$$
\begin{equation*}
\frac{\Delta^{1} Y}{Y}=\sum_{i=1}^{n} B_{i}\left|\frac{\Delta X_{i}}{X_{i}}\right| \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{i}=\frac{1}{k} \sum_{m=1}^{k}\left|\frac{x_{i m}}{f\left(x_{1 m}, \ldots, x_{n m}\right)} \frac{\partial f}{\partial X_{i}}\left(x_{1 m}, \ldots, x_{n m}\right)\right|, i=1, \ldots, n \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\Delta X_{i}}{X_{i}}\right|=\frac{1}{k} \sum_{j=1}^{k}\left|\frac{\Delta x_{i j}}{x_{i j}}\right|, i=1,2, \ldots, n . \tag{8}
\end{equation*}
$$

We note, that in (4) and in (7)

$$
\frac{\partial f}{\partial X_{i}}\left(x_{1 m}, \ldots, x_{n m}\right) \text { and } \frac{x_{i m}}{f\left(x_{1 m}, \ldots, x_{n m}\right)} \frac{\partial f}{\partial X_{i}}\left(x_{1 m}, \ldots, x_{n m}\right)
$$

are respectively the values of $\frac{\partial f}{\partial X_{i}}$ and $\frac{X_{i}}{f} \frac{\partial f}{\partial X_{i}}$, calculated on the m-th observation. A_{i} and B_{i} are the arithmetic means of these values for $m=1,2, \ldots, k$.

In $[4,5]$ we denote the values of the maximal absolute inaccuracy $\Delta^{2} Y$ and of the maximal relative inaccuracy $\frac{\Delta^{2} Y}{Y}$ of second order of $Y=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ respectively by

$$
\begin{equation*}
\Delta^{2} Y=\sum_{i, j=1}^{n} A_{i j}\left|\Delta X_{i}\right|\left|\Delta X_{j}\right| \text { and } \frac{\Delta^{2} Y}{Y}=\sum_{i, j=1}^{n} B_{i j}\left|\frac{\Delta X_{i}}{X_{i}}\right|\left|\frac{\Delta X_{j}}{X_{j}}\right| \tag{9}
\end{equation*}
$$

where $A_{i j}$ and $B_{i j}$ for $\Delta^{2} Y$ and $\frac{\Delta^{2} Y}{Y}$ are defined as follows:

$$
\begin{equation*}
A_{i j}=\frac{1}{k} \sum_{m=1}^{k}\left|\frac{\partial^{2} f}{\partial X_{i} \partial X_{j}}\left(x_{1 m}, \ldots, x_{n m}\right)\right|, i, j=1,2, \ldots, n \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
B_{i j}= & \frac{1}{k} \sum_{m=1}^{k}\left|\frac{x_{i m} x_{j m}}{f\left(x_{1 m}, \ldots, x_{n m}\right)} \frac{\partial^{2} f}{\partial X_{i} \partial X_{j}}\left(x_{1 m}, \ldots, x_{n m}\right)\right|, \tag{11}\\
& i, j=1,2, \ldots, n
\end{align*}
$$

We note, that in (10) and in (11)

$$
\frac{\partial^{2} f}{\partial X_{i} \partial X_{j}}\left(x_{1 m}, \ldots, x_{n m}\right) \text { and } \frac{x_{i m} x_{j m}}{f\left(x_{1 m}, \ldots, x_{n m}\right)} \frac{\partial^{2} f}{\partial X_{i} \partial X_{j}}\left(x_{1 m}, \ldots, x_{n m}\right)
$$

Comparison of the maximal inaccuracies for two experiments
are respectively the values of $\frac{\partial^{2} f}{\partial X_{i} \partial X_{j}}$ and $\frac{X_{i} X_{j}}{f} \frac{\partial^{2} f}{\partial X_{i} \partial X_{j}}$, calculated at the m-th observation. $A_{i j}$ and $B_{i j}$ are the arithmetic means of these values for $m=1,2, \ldots, k$.

The maximum absolute inaccuracy ΔY of an indirectly measurable variable Y in the second degree of approximation, according to [4, 5], is

$$
\begin{equation*}
\Delta Y=\Delta^{1} Y+\frac{1}{2} \Delta^{2} Y \tag{12}
\end{equation*}
$$

and the maximum relative inaccuracy $\frac{\Delta Y}{|Y|}$ of Y in the second degree of approximation is

$$
\begin{equation*}
\frac{\Delta Y}{|Y|}=\frac{\Delta^{1} Y}{|Y|}+\frac{1}{2} \frac{\Delta^{2} Y}{|Y|} \tag{13}
\end{equation*}
$$

In this paper we give some conditions that characterize some type of functions. An indirectly measurable variable can be analytically represented via these functions. Thus we obtain some necessary and sufficient conditions for comparison of the values of the maximal inaccuracies for two experiments. We correct some of our previous conclusions regarding the dimensionless scale application for evaluation of the quality of an experiment. We show two numerical counterexamples.

2 Conditions that characterize different types of functions by which an indirectly measurable variable can be represented analytically

Theorem 1. If $f\left(x_{1}, \ldots, x_{n}\right)$ is a function with domain R^{n} and there exist the first partial derivatives of f in respect to all its variables, then the following holds:

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}=a_{i}, a_{i} \in \mathrm{R}, i=1, \ldots, n \tag{14}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\ldots+a_{n} x_{n}+c, \quad c, a_{i} \in \mathrm{R}, i=1, \ldots, n . \tag{15}
\end{equation*}
$$

Proof. If (15) is true, then obviously (14) holds true.
Contrariwise, let (14) is true. Then from $\frac{\partial f}{\partial x_{i}}=a_{i}$ it follows $\partial f=$ $a_{i} \partial x_{i}, a_{i} \in \mathrm{R}$. Therefore

$$
\begin{equation*}
f=a_{i} x_{i}+c_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right), \tag{16}
\end{equation*}
$$

where $c_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$ is a real function of $x_{1}, \ldots, x_{i-1}, x_{i+1}$, \ldots, x_{n}.

We will prove that

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\ldots+a_{i} x_{i}+c_{i}\left(x_{i+1}, \ldots, x_{n}\right), \tag{17}
\end{equation*}
$$

by induction on $i, 1 \leq i \leq n$.
Indeed, for $i=1$ the equality (17) follows from (16). Assume the equality (17) is true for $i-1 \geq 1$, i.e.

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\ldots+a_{i-1} x_{i-1}+c_{i-1}\left(x_{i}, \ldots, x_{n}\right) \tag{18}
\end{equation*}
$$

Since from (14) and (18) it follows $a_{i}=\frac{\partial f}{\partial x_{i}}=\frac{\partial c_{i-1}}{\partial x_{i}}$, then $\partial c_{i-1}=$ $a_{i} \partial x_{i}$. Therefore

$$
\begin{equation*}
c_{i-1}\left(x_{i}, \ldots, x_{n}\right)=a_{i} x_{i}+c_{i}\left(x_{i+1}, \ldots, x_{n}\right) . \tag{19}
\end{equation*}
$$

As we substitute $c_{i-1}\left(x_{i}, \ldots, x_{n}\right)$ from (19) in (18), then we obtain the equality (17). Therefore formula (17) is proved by induction on i, $1 \leq i \leq n$.

Let $i=n$. Then from (17) we have

$$
f=a_{1} x_{1}+\ldots+a_{n} x_{n}+c,
$$

where $c=c_{n} \in \mathrm{R}$.
The theorem is prooved.

Theorem 2. If $f\left(x_{1}, \ldots, x_{n}\right)$ is a function with domain R^{n} and there exist the first partial derivatives of f in respect to all its variables, then the following holds

$$
\begin{equation*}
\frac{x_{i}}{f} \frac{\partial f}{\partial x_{i}}=k_{i}, k_{i} \in \mathrm{R}, i=1, \ldots, n \tag{20}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f=c x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}, \quad c, k_{i} \in \mathrm{R}^{+}, i=1, \ldots, n \tag{21}
\end{equation*}
$$

Proof. Let (21) holds true. Then

$$
\frac{x_{i}}{f} \frac{\partial f}{\partial x_{i}}=\frac{x_{i} k_{i} c x_{1}^{k_{1}} \ldots x_{i-1}^{k_{i-1}} x_{i}^{k_{i}-1} x_{i+1}^{k_{i+1}} \ldots x_{n}^{k_{n}}}{c x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}}=k_{i}
$$

i.e. (20) holds true.

Contrariwise, let (20) holds true. Let us denote $y=f\left(x_{1}, \ldots, x_{n}\right)$. Then from (20) it follows that $\frac{d y}{y}=\frac{k_{i}}{x_{i}} \partial x_{i}$. We obtain $\ln |y|=k_{i} \ln \left|x_{i}\right|+$ $\ln \left|c_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)\right|$, where $c_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$. Then

$$
\begin{equation*}
y= \pm x_{i}^{k_{i}} c_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) \tag{22}
\end{equation*}
$$

We will prove by induction for $i, 1 \leq i \leq n$, that

$$
\begin{equation*}
y= \pm x_{1}^{k_{1}} \ldots x_{i}^{k_{i}} c_{i}\left(x_{i+1}, \ldots, x_{n}\right) \tag{23}
\end{equation*}
$$

Indeed for $i=1$ the equality (23) is the proved formula (22). Let us assume, that (23) holds true for $i-1 \geq 1$, i.e.

$$
\begin{equation*}
y= \pm x_{1}^{k_{1}} \ldots x_{i-1}^{k_{i-1}} c_{i-1}\left(x_{i}, \ldots, x_{n}\right) \tag{24}
\end{equation*}
$$

From formulas (20) and (24) we have

$$
k_{i}=\frac{x_{i}}{y} \frac{\partial y}{\partial x_{i}}=\frac{x_{i} x_{1}^{k_{1}} \ldots x_{i-1}^{k_{i-1}} \frac{\partial c_{i-1}}{\partial x_{i}}}{x_{1}^{k_{1}} \ldots x_{i-1}^{k_{i-1}} c_{i-1}\left(x_{i}, \ldots, x_{n}\right)}
$$

K. Kolikov, R. Koleva, Y. Epitropov, A. Corlat

Therefore we obtain the following formulas

$$
\begin{gathered}
\frac{\partial c_{i-1}}{c_{i-1}}=\frac{k_{i}}{x_{i}} \partial x_{i}, \ln \left|c_{i-1}\right|=k_{i} \ln \left|x_{i}\right|+\ln \left|c_{i}\left(x_{i+1}, \ldots, x_{n}\right)\right|, \\
c_{i-1}= \pm x_{i}^{k_{i}} c_{i}\left(x_{i+1}, \ldots, x_{n}\right) .
\end{gathered}
$$

We substitute the last formula in (23) and we get

$$
y= \pm x_{1}^{k_{1}} \ldots x_{i-1}^{k_{i}} c_{i}\left(x_{i+1}, \ldots, x_{n}\right)
$$

Thus formula (23) is proved by induction on $i, 1 \leq i \leq n$.
Let $i=n$. From (23) we have

$$
y= \pm x_{1}^{k_{1}} \ldots x_{n}^{k_{n}} c
$$

where $c=c_{n} \in \mathrm{R}$.
The theorem is prooved.
Theorem 3. If $f=f\left(x_{1}, \ldots, x_{n}\right)$ is a second degree polynomial with unknown quantities x_{1}, \ldots, x_{n}, represented in the form

$$
\begin{align*}
f\left(x_{1}, \ldots, x_{n}\right)= & \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}+\sum_{i=1}^{n} a_{i} x_{i}+a, a_{j i}=a_{i j}, \\
& a_{j}, a_{i}, a \in \mathrm{R}, \tag{25}
\end{align*}
$$

then for each $i, j=1, \ldots, n$ the equality $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=2 a_{i j}$ holds.
Proof. Let us denote f in the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{i i}^{2} x_{i}^{2}+2 \sum_{i=1}^{n-1} \sum_{j=2}^{n} a_{i j} x_{i} x_{j}+\sum_{i=1}^{n} a_{i} x_{i}+a .
$$

Then

$$
\frac{\partial f}{\partial x_{i}}=2 a_{i i} x_{i}+2 \sum_{j>i} a_{i j} x_{j}+a_{i}
$$

For $j \neq i$ we have $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=2 a_{i j}$, and for $j=i$ it follows $\frac{\partial^{2} f}{\partial x_{i} \partial x_{i}}=2 a_{i i}$.

The theorem is prooved.
Theorem 4. If the function $f=f\left(x_{1}, \ldots, x_{n}\right)$ has the form

$$
\begin{equation*}
f=c x_{1}^{k_{1}} \ldots x_{i}^{k_{i}} \ldots x_{j}^{k_{j}} \ldots x_{n}^{k_{n}}, \quad c, k_{i} \in \mathrm{R}, \tag{26}
\end{equation*}
$$

then for each i, j the following holds true:

$$
\frac{x_{i} x_{j}}{f} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\left\{\begin{array}{l}
k_{i} k_{j}, \text { if }(i) j \neq i, \tag{27}\\
k_{i}\left(k_{i}-1\right), \text { if }(i i) j=i \text { and } k_{i} \neq 1, \\
0, \text { if } j=i \text { and } k_{i}=1
\end{array}\right.
$$

Proof. If $j \neq i$, then the following equalities are true

$$
\frac{x_{i} x_{j}}{f} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{x_{i} x_{j}}{c x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}} c k_{i} k_{j} x_{1}^{k_{1}} \ldots x_{i}^{k_{i}-1} \ldots x_{j}^{k_{j}-1} \ldots x_{n}^{k_{n}}=k_{i} k_{j} .
$$

If $j=i$ and $k_{i} \neq 1$, then

If $j=i$ and $k_{i}=1$, then obviously the third part of (27) holds true.

3 Some necessary and sufficient conditions for comparison of the values of the maximal inaccuracies for two experiments

1) Let $\Delta^{1} Y$ and $\Delta^{1} \tilde{Y}$ be the maximal absolute inaccuracies of the first order for two experiments, i.e.

$$
\begin{equation*}
\Delta^{1} Y=\sum_{i=1}^{n} A_{i}\left|\Delta X_{i}\right|, \quad \Delta^{1} \tilde{Y}=\sum_{i=1}^{n} \tilde{A}_{i}\left|\Delta \tilde{X}_{i}\right|, \tag{28}
\end{equation*}
$$

where $\left|\Delta X_{i}\right|$ and $\left|\Delta \tilde{X}_{i}\right|$ are defined from formula (5).
K. Kolikov, R. Koleva, Y. Epitropov, A. Corlat
1.1) If in (28) $A_{i}=\frac{\partial f}{\partial x_{i}}$ are constant values, $i=1, \ldots, n$, then according to formula (3)

$$
\begin{equation*}
\Delta^{1} Y=\sum_{i=1}^{n} A_{i}\left|\Delta X_{i}\right|, \quad \Delta^{1} \tilde{Y}=\sum_{i=1}^{n} A_{i}\left|\Delta \tilde{X}_{i}\right| . \tag{29}
\end{equation*}
$$

Thus obviously the following statement is true.
Criterion 1. If $A_{i}=\frac{\partial f}{\partial x_{i}}=$ const, $i=1,2, \ldots, n$, then the first experiment of the maximal absolute inaccuracy of Y is more accurate than the second one if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} A_{i}\left(\left|\Delta \tilde{X}_{i}\right|-\left|\Delta X_{i}\right|\right) \geq 0 \tag{30}
\end{equation*}
$$

Both experiments have equal accuracy if and only if

$$
\sum_{i=1}^{n} A_{i}\left(\left|\Delta \tilde{X}_{i}\right|-\left|\Delta X_{i}\right|\right)=0
$$

In this case for the inaccuracy of the experiments, calculated by the classical way from (1) and (28) we have

$$
\Delta^{1} Y=\frac{1}{k} \sum_{i=1}^{n} \sum_{m=1}^{k} A_{i}\left|\Delta x_{i m}\right|=\sum_{i=1}^{n} A_{i}\left|\Delta \bar{X}_{i}\right|=\sum_{i=1}^{n} A_{i}\left|\Delta X_{i}\right| .
$$

Therefore this result match with our result from (29).
In particular, by $n=1$ the first experiment is more accurate than the second one if and only if $\left|\Delta X_{1}\right| \leq\left|\Delta \tilde{X}_{1}\right|$.

Both experiments have equal accuracy if and only if $\left|\Delta X_{1}\right|=$ $\left|\Delta \tilde{X}_{1}\right|$.

As an example for this case we can consider the function from Theorem 1

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{i} X_{i}+c, \quad a_{i}, c \in \mathrm{R}
$$

1.2) Let in (28) $\Delta X_{1}, \ldots, \Delta X_{n}$ are constant values.

Criterion 2. If $\Delta X_{i}=$ const $\quad(i=1,2, \ldots, n)$, then the first experiment of the maximal absolute inaccuracy of Y is more accurate than the second one if and only if

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\tilde{A}_{i}-A_{i}\right)\left|\Delta X_{i}\right| \geq 0 \tag{31}
\end{equation*}
$$

Both experiments have equal accuracy if and only if

$$
\sum_{i=1}^{n}\left(\tilde{A}_{i}-A_{i}\right)\left|\Delta X_{i}\right|=0
$$

2) Let $\frac{\Delta^{1} Y}{Y}$ and $\frac{\Delta^{1} \tilde{Y}}{Y}$ be the maximal relative inaccuracies of the first order for two experiments, i.e.

If $\frac{X_{i}}{f} \frac{\partial f}{\partial X_{i}}=B_{i} \quad(i=1,2, \ldots, n)$ are constant values, then according to formula (6)

$$
\begin{equation*}
\frac{\Delta^{1} Y}{Y}=\sum_{i=1}^{n}\left|B_{i}\right|\left|\frac{\Delta X_{i}}{X_{i}}\right|, \frac{\Delta^{1} \tilde{Y}}{\tilde{Y}}=\sum_{i=1}^{n}\left|\tilde{B}_{i}\right|\left|\frac{\Delta \tilde{X}_{i}}{\tilde{X}_{i}}\right|, \tag{32}
\end{equation*}
$$

where $\left|\frac{\Delta X_{i}}{X_{i}}\right|$ and $\left|\frac{\Delta \tilde{X}_{i}}{X_{i}}\right|$ are defined from (8).
Criterion 3. If $\frac{x_{i}}{f} \frac{\partial f}{\partial x_{i}}=$ const $\quad(i=1,2, \ldots, n)$, then the first experiment of the maximal relative inaccuracy of Y is more accurate than the second one if and only if

$$
\begin{equation*}
\sum_{i=1}^{n}\left|B_{i}\right|\left(\left|\frac{\Delta \tilde{X}_{i}}{\tilde{X}_{i}}\right|-\left|\frac{\Delta X_{i}}{X_{i}}\right|\right) \geq 0 \tag{33}
\end{equation*}
$$

Both experiments have equal accuracy if and only if

$$
\sum_{i=1}^{n}\left|B_{i}\right|\left(\left|\frac{\Delta \tilde{X}_{i}}{\tilde{X}_{i}}\right|-\left|\frac{\Delta X_{i}}{X_{i}}\right|\right)=0
$$

In particular, for $n=1$ the first experiment is more accurate than the second one if and only if $\left|\frac{\Delta X_{1}}{X_{1}}\right| \leq\left|\frac{\Delta \tilde{X}_{1}}{\tilde{X}_{1}}\right|$. Both experiments have equal accuracy if and only if $\left|\frac{\Delta X_{1}}{X_{1}}\right|=\left|\frac{\Delta \tilde{X}_{1}}{\tilde{X}_{1}}\right|$.
K. Kolikov, R. Koleva, Y. Epitropov, A. Corlat

As an example for this case we can consider the function from Theorem 2

$$
f\left(X_{1}, \ldots, X_{n}\right)=c X_{1}^{k_{1}} \ldots X_{n}^{k_{n}}, \quad c, k_{i} \in \mathrm{R}^{+}, i=1, \ldots, n, \quad k_{1} \neq 0 .
$$

3) Let $\Delta^{2} Y$ and $\Delta^{2} \tilde{Y}$ are the maximal absolute inaccuracies of the second order of two experiments.
3.1) If $\frac{\partial^{2} f}{\partial X_{i} \partial X_{j}}=A_{i j}$ are constants, then according to formula (9)

$$
\begin{equation*}
\Delta^{2} Y=\sum_{i, j=1}^{n} A_{i j}\left|\Delta X_{i}\right|\left|\Delta X_{j}\right|, \quad \Delta^{2} \tilde{Y}=\sum_{i, j=1}^{n} A_{i, j}\left|\Delta \tilde{X}_{i}\right|\left|\Delta \tilde{X}_{j}\right| . \tag{34}
\end{equation*}
$$

Criterion 4. If $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=A_{i j}=$ const $\quad(i, j=1,2, \ldots, n)$, then the first experiment of the maximal absolute inaccuracy of the second order of Y is more accurate than the second one if and only if

$$
\begin{equation*}
\sum_{i, j=1}^{n} A_{i j}\left(\left|\Delta \tilde{X}_{i}\right|\left|\Delta \tilde{X}_{j}\right|-\left|\Delta X_{i}\right|\left|\Delta X_{j}\right|\right) \geq 0 \tag{35}
\end{equation*}
$$

Both experiments have equal accuracy if and only if

$$
\sum_{i, j=1}^{n} A_{i j}\left(\left|\Delta \tilde{X}_{i}\right|\left|\Delta \tilde{X}_{j}\right|-\left|\Delta X_{i}\right|\left|\Delta X_{j}\right|\right)=0
$$

As an example for this case we can consider the function from Theorem 3

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i, j=1}^{n} a_{i j} X_{i} X_{j}+\sum_{i=1}^{n} a_{i} X_{i}+a, \quad a_{i j}, a_{i}, a \in \mathrm{R} .
$$

3.2) Let $\Delta X_{1}, \ldots, \Delta X_{n}$ are constant values and

$$
\Delta^{2} Y=\sum_{i, j=1}^{n} A_{i j}\left|X_{i}\right|\left|X_{j}\right|, \quad \Delta^{2} \tilde{Y}=\sum_{i, j=1}^{n} \tilde{A}_{i j}\left|X_{i}\right|\left|X_{j}\right| .
$$

Criterion 5. If $\Delta X_{i}=$ const, $(i=1,2, \ldots, n)$, then the first experiment of the maximal absolute inaccuracy of the second order of Y is more accurate than the second one if and only if

$$
\begin{equation*}
\sum_{i, j=1}^{n}\left(\tilde{A}_{i j}-A_{i j}\right)\left|\Delta X_{i}\right|\left|\Delta X_{j}\right| \geq 0 \tag{36}
\end{equation*}
$$

Both experiments have equal accuracy if and only if

$$
\sum_{i, j=1}^{n}\left(\tilde{A}_{i j}-A_{i j}\right)\left|\Delta X_{i}\right|\left|\Delta X_{j}\right|=0
$$

4) Let $\frac{\Delta^{2} Y}{Y}$ and $\frac{\Delta^{2} \tilde{Y}}{\tilde{Y}}$ are the maximal relative inaccuracies of the second order of two experiments. If $\frac{X_{i} X_{j}}{f} \frac{\partial^{2} f}{\partial X_{i} \partial X_{j}}=B_{i j}$ are constant values, then from (9) we have

$$
\begin{equation*}
\frac{\Delta^{2} Y}{Y}=\sum_{i, j=1}^{n} B_{i j}\left|\frac{\Delta X_{i}}{X_{i}}\right|\left|\frac{\Delta X_{j}}{X_{j}}\right|, \frac{\Delta^{2} \tilde{Y}}{\tilde{Y}}=\sum_{i, j=1}^{n} B_{i j}\left|\frac{\Delta \tilde{X}_{i}}{\tilde{X}_{i}}\right|\left|\frac{\Delta \tilde{X}_{j}}{\tilde{X}_{j}}\right| \tag{37}
\end{equation*}
$$

Criterion 6. If $\frac{x_{i} x_{j}}{f} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=$ const $\quad(i=1,2, \ldots, n)$, then the first experiment of the maximal relative inaccuracy of the second order of Y is more accurate than the second one if and only if

$$
\begin{equation*}
\sum_{i, j=1}^{n} B_{i j}\left(\left|\frac{\Delta \tilde{X}_{i}}{\tilde{X}_{i}}\right|\left|\frac{\Delta \tilde{X}_{j}}{\tilde{X}_{j}}\right|-\left|\frac{\Delta X_{i}}{X_{i}}\right|\left|\frac{\Delta X_{j}}{X_{j}}\right|\right) \geq 0 \tag{38}
\end{equation*}
$$

Both experiments have equal accuracy if and only if

$$
\sum_{i, j=1}^{n} B_{i j}\left(\left|\frac{\Delta \tilde{X}_{i}}{\tilde{X}_{i}}\right|\left|\frac{\Delta \tilde{X}_{j}}{\tilde{X}_{j}}\right|-\left|\frac{\Delta X_{i}}{X_{i}}\right|\left|\frac{\Delta X_{j}}{X_{j}}\right|\right)=0
$$

4 Counterexamples to the dimensionless scale and improvement of its application

In [1] we considered $\Delta X_{1}, \Delta X_{2}, \ldots, \Delta X_{n}, \pm Y$ as a system of generalized orthogonal coordinates. Then for $n \geq 2$ we get an ($n+1$)-dimensional Euclidean space, where (3) is an equation of a plane that passes through the origin of the coordinate system.

Thus we take ε for sample plane in the space of the absolute inaccuracy which represents an imaginary ideal perfectly accurate experiment.

If $\alpha: \Delta Y=A_{1} \Delta X_{1}+A_{2} \Delta X_{2}+\ldots+A_{n} \Delta X_{n}$, then ε is determined by $A_{1}=A_{2}=\ldots=A_{n}=0$, i.e.

$$
\varepsilon: \Delta Y=0
$$

In $[2,3]$ we considered the angle between the normal vectors $\overrightarrow{n_{\alpha}}\left(A_{1}, A_{2}, \ldots, A_{n},-1\right)$ of the plane α of the real experiment and $\overrightarrow{n_{\varepsilon}}(0,0, \ldots, 0,-1)$ of the palne ε. Then the value of the cosine

$$
\begin{equation*}
k_{\alpha}=\cos \angle\left(\overrightarrow{n_{\alpha}}, \overrightarrow{n_{\varepsilon}}\right)=\frac{1}{\sqrt{A_{1}^{2}+A_{2}^{2}+\ldots+A_{n}^{2}+1}} \tag{39}
\end{equation*}
$$

of this angle can be chosen for a coefficient of accuracy in a dimensionless scale, i.e. for a numerical characteristic of the quality of the experiment.

Since $k_{\alpha}=\cos \angle\left(\overrightarrow{n_{\alpha}}, \overrightarrow{n_{\varepsilon}}\right)$, then the scale for evaluating the quality of the experiment is the interval $[0,1]$. The value $k_{\alpha}=1$ represents the ideal perfectly accurate experiment and the value $k_{\alpha}=0$ represents the ideal absolutely inaccurate experiment. The conclusions we have made in $[1,2,3]$ regarding the application of the scale are not absolutely correct. We will prove this with the following numerical examples, applying the criteria from section 3 .

Example 1) Let $S=f(t)=g t$ be the distance that the uniformly moving object passes with constant velocity v during time t. Thus $f(t)$ has the form from Theorem 1.

For the first experiment we choose $t_{11}=4, t_{12}=2$. Then $\bar{t}_{1}=$ $3,\left|\Delta t_{11}\right|=1,\left|\Delta t_{12}\right|=1,\left|\Delta t_{1}\right|=1$. Since $\frac{d f}{d t}=v$, then according to
formula (4)

$$
A_{1}=\frac{1}{2} \sum_{m=1}^{2}\left|\frac{d f}{d t}\left(t_{1 m}\right)\right|=\frac{1}{2} \sum_{m=1}^{2}|v|=v .
$$

From (3) we find the value of the maximal absolute inaccuracy for the first experiment

$$
\Delta^{1} Y=\Delta^{1} f=A_{1}\left|\Delta t_{1}\right|=v .1=v
$$

For the second experiment we choose $\tilde{t}_{11}=3,6, \tilde{t}_{12}=2,2$. Then $\bar{t}_{1}=2,9,\left|\Delta \tilde{t}_{11}\right|=0,7,\left|\Delta \tilde{t}_{12}\right|=0,7,\left|\Delta \tilde{t}_{1}\right|=0,7$. From (4), since $\frac{d f}{d t}=v$, we calculate

$$
A_{2}=\frac{1}{2} \sum_{m=1}^{2}\left|\frac{d f}{d t}\left(t_{1 m}\right)\right|=\frac{1}{2} \sum_{m=1}^{2}|v|=v .
$$

From (3) we find the value of the maximal absolute inaccuracy for the second experiment

$$
\Delta^{1} \tilde{Y}=\Delta^{1} \tilde{f}=A_{2}\left|\Delta \tilde{t}_{1}\right|=0,7 v
$$

Since $A_{1}=A_{2}$, then from formula (38) we have the following relationship between the coefficients of accuracy:

$$
k_{1}=\frac{1}{\sqrt{A_{1}^{2}+1}}=\frac{1}{\sqrt{A_{2}^{2}+1}}=k_{2},
$$

i.e. regarding $[1,2,3]$ we can conclude that both experiments have the same accuracy. But

$$
\Delta^{1} Y=\Delta^{1} f=g>0,7 g=\Delta^{1} \tilde{Y}=\Delta^{1} \tilde{f}
$$

Therefore the second experiment is more accurate than the first one. This counterexample contradicts the conclusions in $[1,2,3]$ for the dimensionless scale.

From the necessary and sufficient conditions we have presented in section 4 , for $A_{1}=A_{2}$, according to Criterion 1 , it follows that the
K. Kolikov, R. Koleva, Y. Epitropov, A. Corlat
second experiment is more accurate than the first one, because $\left|\Delta \tilde{t}_{1}\right|<$ $\left|\Delta t_{1}\right|$. Therefore Criterion 1 gives us more precise conclusion.

Example 2) Let $S=f(t)=\frac{g t^{2}}{2}$ be the distance that free falling object passes during time t (in vacuum) and $g=9,8 \mathrm{~m} / \mathrm{s}^{2}$ is the earth gravitational acceleration. Thus $f(t)$ has the form from Theorem 2 .

For the first experiment we choose $t_{11}=2, t_{12}=1,6$. Then $\bar{t}_{1}=1,8,\left|\Delta t_{11}\right|=0,2,\left|\Delta t_{12}\right|=0,2$ and $\left|\Delta t_{1}\right|=0,2$. Since $\frac{d f}{d t}=g t$, then from formula (4) we find $A_{1}=\frac{1}{2} \sum_{m=1}^{2}\left|\frac{d f}{d t}\left(t_{1 m}\right)\right|=$ $\frac{1}{2} \sum_{m=1}^{2}|g t|=\frac{1}{2} g \sum_{m=1}^{2}|t|=\frac{1}{2} g(2+1,6)=1,8 g$. From formula (3) we calculate the value of the maximal absolute inaccuracy for the first experiment

$$
\Delta^{1} Y=\Delta^{1} f=A_{1}\left|\Delta t_{1}\right|=1,8 g \times 0,2=0,36 g
$$

For the second experiment we choose $\tilde{t}_{11}=1,8, \tilde{t}_{12}=1,9$. Then $\bar{t}_{1}=1,85,\left|\Delta \tilde{t}_{11}\right|=0,05,\left|\Delta \tilde{t}_{12}\right|=0,05,\left|\Delta \tilde{t}_{1}\right|=0,05$. From formula (4) we find

$$
\begin{gathered}
A_{2}=\frac{1}{2} \sum_{m=1}^{2}\left|\frac{d f}{d t}\left(t_{1 m}\right)\right|=\frac{1}{2} \sum_{m=1}^{2}|g t|=\frac{1}{2} g \sum_{m=1}^{2}|t|= \\
=\frac{1}{2} g(1,8+1,9)=1,85 g
\end{gathered}
$$

From formula (3) we find the value of the maximal absolute inaccuracy for the second experiment

$$
\Delta^{1} \tilde{Y}=\Delta^{1} \tilde{f}=A_{2}\left|\Delta \tilde{t}_{1}\right|=1,85 g \times 0,05=0,0925 g
$$

Since $A_{1}<A_{2}$, then from formula (39) we have the following relationship between the coefficients of accuracy:

$$
k_{1}=\frac{1}{\sqrt{A_{1}^{2}+1}}>\frac{1}{\sqrt{A_{2}^{2}+1}}=k_{2}
$$

i.e. according to $[2,3]$ the value of the maximal absolute inaccuracy $\Delta^{1} Y$ for the first experiment is more accurate than the value $\Delta^{1} \tilde{Y}$ of

Comparison of the maximal inaccuracies for two experiments
the second one. But

$$
\Delta^{1} \tilde{Y}=\Delta^{1} \tilde{f}=0,0925 g<0,36 g=\Delta^{1} Y=\Delta^{1} f
$$

Therefore we can conclude that the second experiment is more accurate than the first one. This counterexample contradicts the conclusions in $[1,2,3]$ for the dimensionless scale.

Both examples show that the conclusions we have made in $[1,2,3]$ regarding the dimensionless scale and the sample plane in the spaces of the absolute and relative inaccuracies, have to be improved.

For correct application of the dimensionless scale in $[1,3]$, we give the following supplements.

Definition 5. We will say that the vector $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is less than or equal to the vector $B=\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ (coordinate by coordinate) and we will denote with $\bar{A} \leq \bar{B}$, if $A_{i} \leq B_{i}$ for each $i=1,2, \ldots, n$.

Let for fixed values of $\Delta X_{1}, \Delta X_{2}, \ldots, \Delta X_{n}$ for an experiment we have two different forms for representation of the maximal absolute inaccuracy ΔY, i.e.:
$\Delta^{1} Y=A_{1} \Delta X_{1}+A_{2} \Delta X_{2}+\ldots+A_{n} \Delta X_{n}$ and $\Delta^{1} \tilde{Y}=B_{1} \Delta X_{1}+$ $B_{2} \Delta X_{2}+\ldots+B_{n} \Delta X_{n}$.

Then obviously the following conclusion is true:
Theorem 6. For fixed values of $\Delta X_{1}, \Delta X_{2}, \ldots, \Delta X_{n}$ between two experiments with planes $\alpha: \Delta^{1} Y=A_{1} \Delta X_{1}+A_{2} \Delta X_{2}+\ldots+A_{n} \Delta X_{n}$ and $\beta: \Delta^{1} \tilde{Y}=B_{1} \Delta X_{1}+B_{2} \Delta X_{2}+\ldots+B_{n} \Delta X_{n}$ the more accurate is that one, the normal vector of which is less than or equal to the other.

If there are two vectors $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right), B=\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ and $\bar{A} \leq \bar{B}$, then $k_{\alpha} \geq k_{\beta}$ and for the fixed $\Delta X_{1}, \Delta X_{2}, \ldots, \Delta X_{n}$ it follows that $\Delta^{1} Y \leq \Delta^{1} \tilde{Y}$. However it is not true the statement that we formulated in $[1,3]$, that from $k_{\alpha} \geq k_{\beta}$ it follows $\Delta^{1} Y \leq \Delta^{1} \tilde{Y}$.

Let us consider that the maximal absolute inaccuracy ΔY has the same representation $\Delta Y=A_{1} \Delta X_{1}+A_{2} \Delta X_{2}+\ldots+A_{n} \Delta X_{n}$ for two provided experiments, i.e. the values of the coefficients $A_{1}, A_{2}, \ldots, A_{n}$ are fixed. Then obviously for different experiments with measured values $x_{11}, x_{12}, \ldots, x_{1 n}$ and $x_{21}, x_{22}, \ldots, x_{2 n}$ of $\Delta X_{1}, \Delta X_{2}, \ldots, \Delta X_{n}$ the following conclusion is true:
K. Kolikov, R. Koleva, Y. Epitropov, A. Corlat

Theorem 7. For the fixed values $A_{1}, A_{2}, \ldots, A_{n}$ between experiments with measured values $x_{11}, x_{12}, \ldots, x_{1 n}$ and $x_{21}, x_{22}, \ldots, x_{2 n}$ of $\Delta X_{1}, \Delta X_{2}, \ldots, \Delta X_{n}$, the more accurate experiment is that one, the vector of which is less than or equal (coordinate by coordinate) to the other.

Thus, if $x_{1}=\left(x_{11}, x_{12}, \ldots, x_{1 n}\right), x_{2}=\left(x_{21}, x_{22}, \ldots, x_{2 n}\right)$ and $\bar{x}_{1} \leq$ \bar{x}_{2}, then $\Delta^{1} Y \leq \Delta^{1} \tilde{Y}$. In this case the reverse statement is not true.

The most accurate experiment will be that one, where the values of the variables and the normal vector (coordinate by coordinate) are the least possible.

Analogical conclusions as Theorem 6 and Theorem 7 can be formulated also for the maximal relative inaccuracy $\frac{\Delta Y}{Y}$ of an indirectly measurable variable Y.

5 Discussion

The suggested by us method for determining the numerical values of the maximal and relative inaccuracy of an indirectly measurable variable is of great importance for every experimental science, in which the studied processes can be modelled via functions. The values of the maximal inaccuracies can be compared very easily when we have two experiments.

6 Conclusion

In this paper we give necessary and sufficient conditions for comparison of the values of the maximal inaccuracies for two experiments. We consider some of the most common in the practice classes of functions. We give numerical counterexamples regarding the introduced by us dimensionless scale in $[1,2,3]$ for evaluation of two experiments. We also give some conditions for the correct application of the scale. Thus we improve the conclusions we have made in $[1,2,3]$.

Acknowledgement. We would like to thank Prof. PhD Todor Mollov from Plovdiv University "Paisii Hilendarski" for the valuable

Comparison of the maximal inaccuracies for two experiments
suggestions that have improved the article.

References

[1] K. Kolikov, G. Krastev, Y. Epitropov, D. Hristozov, "Analytically determining of the absolute inaccuracy (error) of indirectly measurable variable and dimensionless scale characterising the quality of the experiment," Chemometr Intell Lab, vol. 102, 2010a. Available: doi:10.1016/j.chemolab.2010.03.001.
[2] K. Kolikov, G. Krastev, Y. Epitropov, D. Hristozov, "Method for analytical representation of the maximum inaccuracies of indirectly measurable variable (survey)," in Anniversary International Conference "Research and Education in Mathematics, Informatics and their Applications" - REMIA 2010, (Bulgaria, Plovdiv), , 10-12 December, 2010b, pp. 159-166. Available: http://hdl.handle.net/10525/1449.
[3] K. Kolikov, G. Krastev, Y. Epitropov, A. Corlat, "Analytically determining of the relative inaccuracy (error) of indirectly measurable variable and dimensionless scale characterising the quality of the experiment", CSJM, vol. 20, no. 1, pp. 314-331, 2012.
[4] K. Kolikov, Y. Epitropov, G. Krastev, A. Corlat, "Maximum inaccuracies of second order", CSJM, vol. 23, no. 1, pp. 24-39, 2015. Available: http://www.math.md/publications/csjm/issues/v23n1/11891/.
[5] R. Koleva, Y. Epitropov, K. Kolikov, "Algebraic classification of the surfaces of the maximum inaccuracies of an indirectly measurable variable in multidimensional Euclidean space," in Scientific Works of the Union of Scientists in Bulgaria (Series C. Technics and technologies, Vol. XIV), Plovdiv, 2017, pp. 214-217. ISSN: 1311-9419 (Print), ISSN: 2534-9384 (On-line).
[6] I. Panchev, D. Hristozov, T. Garcheva, D. Karmyzova, S. Panayotova, Practice in Physics, Academic publishing of the University of Food Technologies, Plovdiv, 2014. (in Bulgarian).
[7] H. Fan, Theory of errors and least squares adjustment, Stockholm: Royal Institute of Technology, 2010.

Kiril Kolikov, Radka Koleva, Received June 28, 2017
Yordan Epitropov, Andrei Corlat
Kiril Kolikov
Plovdiv University "Paisii Hilendarski", 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
E-mail: kolikov@uni-plovdiv.bg
Yordan Epitropov
Plovdiv University "Paisii Hilendarski", 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
E-mail: epitropov@uni-plovdiv.bg
Radka Koleva
University of Food Technologies (UFT), 26 Maritsa Blvd, 4000 Plovdiv, Bulgaria
E-mail: r.p.koleva@gmail.com
Andrei Corlat
Institute of Mathematics and Computer Science of ASM,
5, Academiei street, Chisinau, Republic of Moldova, MD 2028,
E-mail: an.corlat@gmail.com

