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Abstract

In the following paper we present an easily applicable new
method for analytical representation of the maximum relative
inaccuracy (error) of an indirectly measurable variable f =
f(x1, x2, ..., xn) as a function of the maximum relative inaccu-
racies (errors) of the directly measurable variables x1, x2, ..., xn.
Our new approach is more adequate for the objective real-
ity. The gist of it is that in order to find the analyti-
cal form of the maximum relative inaccuracy of the variable
f we take for being fixed variables statistical mean values∣∣∣∣
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f . The numerical value of the maximum relative inaccuracy of
the variable f is found using the statistical mean values of the ab-

solute values of the relative inaccuracies
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Moreover, we look into functions which are continuous but are
not differentiable in respect to certain arguments in some points.
Having this in mind we develop the theory of errors, which we
will call with what we feel is a more precise term – theory of in-
accuracies. We introduce some new terms – space of the relative
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inaccuracy and plane of the relative inaccuracy of f . We also
define a sample plane of the ideal absolutely accurate experiment
and using it we define a universal numerical characteristic – a di-
mensionless scale for evaluation of the quality (accuracy) of the
experiment.

Keywords: Indirectly measurable variable, maximum rela-
tive error, dimensionless scale.

1 Introduction

Many natural and social processes are described by indirectly mea-
surable variables dependent on a finite number of directly measurable
variables. As it is known, the measuring of the values of each directly
measurable variable is accompanied by inaccuracies. With respect to
their alteration characteristics, the inaccuracies are systematic or ran-
dom [1].

The systematic inaccuracies are permanent or their alteration can
be described by a law. They are the result of certain constant influences
which cannot be foreseen. Towards the random accuracies we shall
also account what we call hidden inaccuracies that are the result of
influences of measured active objects [2] that appear in a time interval
and change the natural progress of the observed process (such as objects
that have their own sources of energy; living organisms with their own
will, etc.).

Thus each measurable variable is determined with a total inac-
curacy that is caused by both systematic and random inaccuracies.
Therefore, it is of great importance to develop a reliable method for
finding the total inaccuracy of given measurable variable.

In respect of the way a certain inaccuracy is represented it can
be absolute or relative. An absolute inaccuracy is expressed in units of
the measured variable. A relative inaccuracy is a dimensionless variable
and is represented by the ratio of the absolute inaccuracy and the value
of the measured experimental variable.

Usually the processes that are being studied are mathematically
modelled with real functions that are differentiable in their domains.
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(Even non-continuous functions can be viewed as differentiable in a
certain sense.)

Here is a real differentiable function

f = f(x1, x2, ..., xn) 6= 0 (1)

of n real independent variables x1, x2, ..., xn, which help one to be able
to model directly measurable variables (with the help of measuring
tools or methods). Then the function f models one indirectly measur-
able variable.

In order to calculate the absolute and the relative inaccuracies of in-
directly measurable variable f which has continuous first partial deriva-
tives in respect to all its variables there are two principles [3, 4, 5] given
in scientific and academic literature.

The first principle gives the maximum absolute inaccuracy ∆f of
the function f . Initially we have to determine the full differential

df =
n∑

i=1

∂f

∂xi
dxi (2)

of the function (1). When the inaccuracies of the measurements are
small enough in formula (2) the differential d can be replaced with the
finite difference ∆, and in this substitution every minus is replaced with
a plus to reach the maximum value of the inaccuracy. Thus one obtains

∆f =
n∑

i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣ · |∆xi| , (3)

where ∆xi is the maximum absolute inaccuracy of the directly mea-
sureable variable xi(i = 1, 2, ..., n). The maximum relative inaccuracy
fr is then determined by the expression

fr =
∆f

|f | =
1
|f |

n∑

i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣ · |∆xi| . (4)
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By the second principle, we initially find the maximum relative in-
accuracy fr of the function f . In order to do this, we find the logarithm
of the function (1) and then we determine full differential of the result.
Further we replace the differential d in the same way with the finite
difference ∆ and again replace every minus with a plus to reach the
maximum value of the inaccuracy. Thus, we get the maximum rel-
ative inaccuracy fr. Then the maximum absolute inaccuracy ∆f is
determined from the expression ∆f = f · fr.

Since in the set of real numbers we can find only the logarithms of
positive variables, the second principle limits the class of functions for
which we can find the respective inaccuracies.

In [1], based solely on differentiation we define a simple method
for representing the maximum absolute (total) inaccuracy of an indi-
rectly measurable variable f(x1, x2, ..., xn) as a function of the maxi-
mum absolute (total) inaccuracies of the directly measurable variables
x1, x2, ..., xn. Based on this method we introduce a numerical charac-
teristic – dimensionless scale for evaluation of the quality (accuracy) of
the experiment.

The purpose of this paper is to apply this procedure for the maxi-
mum relative inaccuracy of f(x1, x2, ..., xn). Moreover, we extend the
type of the function f by also looking into the case when it is not
differentiable but is continuous in respect to some arguments in some
points.

2 Analytic representation of the maximum rel-
ative inaccuracy of an indirectly measurable
variable

Firstly, let the function f has continuous partial derivatives in respect
to all its variables. Let us present formula (4) in this way

fr =
n∑

i=1

∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ ·
∣∣∣∣
∆xi

xi

∣∣∣∣ (xi 6= 0, i = 1, 2, ..., n). (5)

This shows that evaluation of the relative inaccuracy of the indi-
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rectly measurable variable f(x1, x2, ..., xn) is dependant not only on
the relative inaccuracies with which the directly measureable vari-
ables x1, x2, ..., xn are determined, but also on the analytical form
of the function f itself. For i = 1, 2, ..., n every addend of the form∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ ·
∣∣∣∣
∆xi

xi

∣∣∣∣ is the partial relative inaccuracy of the result of the

indirect measurement of the function f , caused by the inaccuracy
∆xi

xi
with which the variable xi is determined.

The variable
∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ is in fact the coefficient of influence of

the inaccuracy
∆xi

xi
when determining the relative inaccuracy of

f(x1, x2, ..., xn).

Let us now assume the function f(x1, x2, ..., xn) is not differentiable
in respect to its argument xk (1 ≤ k ≤ n) in some points akj , but is
continuous in respect to this argument in akj . The partial derivative
∂f

∂xk
does not exist in the points akj .

However, if for f there are right and left derivatives given xk → akj ,
then in order to compute the maximum relative inaccuracy in the for-

mula (5) the variable
∂f

∂xk
is replaced by the one of the two limits in

which the coefficient of influence
∣∣∣∣
xk

f
· ∂f

∂xk

∣∣∣∣ has greater value. (The

values of the two limits are different, otherwise f would be differ-
entiable in respect to xk). An example for such function would be
f = A arcsin(sinx) representing the voltage of triangle signal [6]. In
Figure 1 we have shown the graphics of the function when A = 500 V

and x = 2πvt ∈
[
0,

13
4

π

]
, where v = 15 kHz is the linear frequency

and t is the time.
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Figure 1. Graphics of the function f = 500 arcsin(sinx), x ∈
[
0,

13
4

π

]

We would like to point out that this procedure for indifferentiable
but continuous functions in respect to its arguments in some points is
proposed for the first time in the theory of inaccuracies.

Moreover, a novelty in our approach for determining the analyti-
cal form of the maximum relative (total) inaccuracy of the indirectly
measureable variable f(x1, x2, ..., xn) is that in formula (5) we take for

fixed variables the mean values
∣∣∣∣
x1

f
· ∂f

∂x1

∣∣∣∣,
∣∣∣∣
x2

f
· ∂f

∂x2

∣∣∣∣, ...,
∣∣∣∣
xn

f
· ∂f

∂xn

∣∣∣∣ of

the absolute values of the coefficients of influence of the relative inaccu-
racies

∆x1

x1
,
∆x2

x2
, ...,

∆xn

xn
of the indirectly measurable variable f and

the maximum relative inaccuracies
∆x1

x1
,
∆x2

x2
, ...,

∆xn

xn
of the directly

measurable variables x1, x2, ..., xn are considered to be variables.
Thus according to (5) the maximum relative inaccuracy fr of the

indirectly measurable variable f is a linear function of the maximum rel-

ative inaccuracies
∆x1

x1
,
∆x2

x2
, ...,

∆xn

xn
of the directly measurable vari-

ables x1, x2, ..., xn.

If we look at
∆x1

x1
,
∆x2

x2
, ...,

∆xn

xn
,±fr as a system of generalized

orthogonal coordinates, for n > 2 we get an n + 1-dimensional metric
hyperspace Fn+1

r , where (5) is the equation of a hyperplane that passes
through the origin of the coordinate system. The hyperspace Fn+1

r will
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be called space of the relative inaccuracy of f , and fr will be called plane
of the relative inaccuracy of f .

For n = 2, according to formula (5) we have

fr =
∣∣∣∣
x1

f
· ∂f

∂x1

∣∣∣∣ ·
∣∣∣∣
∆x1

x1

∣∣∣∣ +
∣∣∣∣
x2

f
· ∂f

∂x2

∣∣∣∣ ·
∣∣∣∣
∆x2

x2

∣∣∣∣ .

Thus the equation fr = fr

(
∆x1

x1
,
∆x2

x2

)
is an equation of the plane of

the relative inaccuracy in the three-dimensional metric space F 3
r of the

relative inaccuracy of f .
For n = 1 formula (5) becomes

fr =
∣∣∣∣
x

f
· ∂f

∂x

∣∣∣∣ ·
∣∣∣∣
∆x

x

∣∣∣∣ .

Thus the equation fr = fr

(
∆x

x

)
is an equation of the line of the rela-

tive inaccuracy in the two-dimensional metric space F 2
r of the relative

inaccuracy of f .
The term space of the relative inaccuracy is introduced for the first

time in this paper. Moreover, as we pointed in [1], in a certain sense it
is an analogy of the imaginary configurative space in the Hamiltonian
reformulation of the classical mechanics [7]. In that same sense the sys-

tem
∆x1

x1
,
∆x2

x2
, ...,

∆xn

xn
,±fr can be viewed as generalised orthogonal

coordinates.

3 Determining the numerical value of the max-
imum relative inaccuracy of an indirectly
measurable variable

Let us have an experiment where k measurements of the directly mea-
sureable variables x1, x2, ..., xn are made. On the m-th measurement
(m = 1, 2, ..., k) the absolute values of the coefficients of influence
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, ...,
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f
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∂xn

∣∣∣∣
m

and of the relative inaccura-
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∣∣∣∣
∆x1
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∣∣∣∣
m

,

∣∣∣∣
∆x2

x2

∣∣∣∣
m
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∣∣∣∣
∆xn
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∣∣∣∣
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are calculated. After this the mean

values
∣∣∣∣
xj

f
· ∂f

∂xj

∣∣∣∣ =
1
k

k∑

m=1

∣∣∣∣
xj

f
· ∂f

∂xj

∣∣∣∣
m

(j = 1, 2, ..., n) are calculated

and from formula (5) one can get the analytical representation (equa-
tion) of the plane of the inaccuracies.

Furthermore, if
∣∣∣∣
∆xi

xi

∣∣∣∣ =
1
k

k∑

m=1

∣∣∣∣
∆xi

xi

∣∣∣∣
m

, then according to formula

(5) the numerical value of the maximum relative inaccuracy

fr =
n∑

i=1

∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ ·
∣∣∣∣
∆xi

xi

∣∣∣∣

is determined, as the point

(∣∣∣∣
∆x1

x1

∣∣∣∣,
∣∣∣∣
∆x2

x2

∣∣∣∣, ...,
∣∣∣∣
∆xn

xn

∣∣∣∣, fr

)
lies in the

plane of the relative inaccuracy.
The function f(x1, x2, ..., xn) can be considered as a random vari-

able of random independent variables. In that sense the suggested by
us method for computing fr is more adequate to the objective real-
ity because the statistical mean value of a random variable is actually
its most probable value. Again in that sense the plane of the relative
inaccuracy of f is a stochastic plane.

The numerical value of the maximum absolute inaccuracy ∆f of
the experiment can be determined directly using [1] or using formula
(4) and the known numerical value of fr.

If the function f(x1, x2, ..., xn) is not differentiable in respect to
an argument xk (1 ≤ k ≤ n) in some points akj , but is continuous
in respect to this argument in akj , then the method is applied to the
maximum absolute inaccuracy analogically to the already described
way.
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4 Scale characterising the quality of the exper-
iment

It is very important and advantageous for every measuring method
to have a numerical characteristic – a scale which is used to evaluate
the quality of the experiment, i. e. its accuracy. For the first time
in the theory of the inaccuracies we suggested this kind of scale in
[1]. Here we suggest analogical scale which has the important property
dimensionless, i. e. the quality of the experiment is expressed only
with a number, not with the units of measurements.

Let us look at the stochastic plane α of the relative inaccuracy of
f . According to (5) its general equation is of the following type

α :
n∑

i=1

Ai ·
∣∣∣∣
∆xi

xi

∣∣∣∣− fr = 0,

where Ai =
∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ = const ≥ 0. As we have already emphasised,

this is the equation of a hyperplane in the hyperspace Fn+1
r going

through the beginning of the coordinate system.
Let us also take a look at the hyperplane

ε : fr = 0.

It is obvious that the equation fr = 0 is possible if and only if
x1

f
· ∂f

∂x1
=

x2

f
· ∂f

∂x2
= ... =

xn

f
· ∂f

∂xn
= 0, i. e. if and only if

∂f

∂x1
=

∂f

∂x2
= ... =

∂f

∂xn
= 0. Thus we take ε for sample plan in the

space of the relative inaccuracy which represents an imaginary ideal
perfectly accurate experiment even though this experiment is impossi-
ble and the sample plane ε is unreachable. However, by increasing the
accuracy of the real experiment the plane α approximates ε. Thus the
smaller the deviation of the plane α of the experiment from the sample
plane ε of the ideal experiment is, i. e. the smaller the angle between
these two planes is, the more accurate the experiment is. This angle
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can be always calculated as it is equal to the angle between the normal
vectors −→nα(A1, A2, ..., An,−1) of the plane α and −→nε(0, 0, ..., 0,−1) of
the plane ε. Then the value of the cosine

kα = cos∠(−→nα,−→nε) =
1√

A2
1 + A2

2 + ... + A2
n + 1

(6)

of this angle can be chosen for a coefficient of accuracy in a dimen-
sionless scale, i. e. for a numerical characteristic of the quality of the
experiment.

The scale for evaluating the quality of the experiment is the interval
[0, 1]. An experiment is as accurate as the value of the coefficient of
accuracy kα is closer to 1 and is as inaccurate as the value of the
coefficient of accuracy kα is closer to 0. The value kα = 1 represents
the ideal perfectly accurate experiment and the value kα = 0 – the
ideal absolutely inaccurate experiment.

Then from formula (6) we get the following
Criterion for accuracy of an experiment – An experiment is as ac-
curate as possible if and only if the sum of the squares of the coefficients

A2
1 + A2

2 + ... + A2
n =

(
x1

f
· ∂f

∂x1

)2

+
(

x2

f
· ∂f

∂x2

)2

+ ... +
(

xn

f
· ∂f

∂xn

)2

is the least possible.
The accuracy of the experiment can, of course, be interpreted using

the angle between the stochastic plane α of the relative inaccuracy
and the sample plane ε. Then the scale for evaluating the quality of
the experiment is the interval

[
0,

π

2

]
. An experiment is as accurate

as the value of arccos kα is closer to 0, and is as inaccurate as the
value of arccos kα is closer to

π

2
. The value 0 corresponds to the ideal

perfectly accurate experiment and the value
π

2
– to the ideal absolutely

inaccurate experiment.
We take for basic scale the interval [0, 1] and for basic measurement

of the accuracy of the experiment the value of the coefficient of accu-
racy kα = cos∠(−→nα,−→nε) since both of them are dimensionless variables
contrary to the second scale and measurement which are measured in
radians.
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5 An example and computations

We will present an example which illustrates our method and scale. It
is known that the coefficient η of the viscosity of a liquid with density
ρ can be determined using the Stokes’ method when a sphere with
radius r and density ρ1 is put in a cylindrical container filled in with
the examined liquid. In a given moment of time the sphere starts to
descent steadily with a constant speed ν and its weight is the same as
the buoyancy and the force of internal friction (viscosity) of the liquid

as the following holds η =
2r2g

9ν
(ρ1 − ρ), where g = 9.8 m·s−2 is the

gravity of Earth.

We made an experiment for measuring the viscosity of glycerine
(under temperature t = 18o C) using lead spheres having measured the
density of the glycerine and the lead in advance. In Table 1 experi-
mental data from the measurements and the corresponding calculated
values of the viscosity with accuracy of four digits in the decimal part
are given.

Table 1. Experimental data from the measurements of the viscosity of
glycerine using the Stokes’ method.

m-th
mea-
sure-
ment

rm[m] νm[m·s−1] ρm[kg·m−3] ρ1m[kg·m−3] ηm[Pa·s]

1 5× 10−4 4.54×10−3 1.262×103 1.1341×104 1.2087
2 5× 10−4 4.52×10−3 1.262×103 1.1341×104 1.214
3 5× 10−4 4.5× 10−3 1.262×103 1.1341×104 1.2194
4 4.8×10−4 4.22×10−3 1.26× 103 1.134× 104 1.1944
5 4.8×10−4 4.2× 10−3 1.26× 103 1.134× 104 1.2003
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5.1 Computing the maximum relative inaccuracy ηr, us-
ing the classical method

According to (4) we have

ηr =
∣∣∣∣
2
r

∣∣∣∣ · |∆r|+
∣∣∣∣
1
ν

∣∣∣∣ · |∆ν|+
∣∣∣∣

1
ρ1 − ρ

∣∣∣∣ · |∆ρ|+
∣∣∣∣

1
ρ1 − ρ

∣∣∣∣ · |∆ρ1|.

We firstly compute the mean values

r =
1
5

5∑

m=1

rm = 4.92× 10−4 m,

ν =
1
5

5∑

m=1

νm = 4.396× 10−3 m · s−1,

ρ =
1
5

5∑

m=1

ρm = 1.2612× 103 kg ·m−3,

ρ1 =
1
5

5∑

m=1

ρ1m = 1.13406× 104 kg ·m−3.

Then |∆r|1 = |r1 − r| = 0.08 × 10−4 m, |∆ν|1 = |ν1 − ν| =
= 0.144 × 10−3 m·s−1, |∆ρ|1 = |ρ1 − ρ| = 0.0008 × 103 kg·m−3,
|∆ρ1|1 = |ρ11 − ρ1| = 0.00004× 104 kg·m−3 and thus we get the value
of

ηr,1 =
2
r1
·|∆r|1+

1
ν1
·|∆ν|1+

1
ρ11 − ρ1

·|∆ρ|1+
1

ρ11 − ρ1
·|∆ρ1|1 = 0.0779.

Analogically, we compute ηr,2 = 0.0737, ηr,3 = 0.0694, ηr,4 = 0.1172,

ηr,5 = 0.1224. We finally get ηr =
1
5

5∑

m=1

ηr,m = 0.0921.
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5.2 Computing the maximum relative inaccuracy ηr, us-
ing the method introduced by us

According to Section 2 under the same measurements we compute

the absolute values of the coefficients of influence
∣∣∣∣
r

η
· ∂η

∂r

∣∣∣∣ = 2,
∣∣∣∣
ν

η
· ∂η

∂ν

∣∣∣∣ = 1,
∣∣∣∣
ρ

η
· ∂η

∂ρ

∣∣∣∣
m

=
ρm

ρ1m − ρm
,

∣∣∣∣
ρ1

η
· ∂η

∂ρ1

∣∣∣∣
m

=
ρ1m

ρ1m − ρm
and

the ones of the relative inaccuracies
∣∣∣∣
∆r

r

∣∣∣∣
m

,

∣∣∣∣
∆ν

ν

∣∣∣∣
m

,

∣∣∣∣
∆ρ

ρ

∣∣∣∣
m

,

∣∣∣∣
∆ρ1

ρ1

∣∣∣∣
m

.

The results can be seen in Table 2.

Table 2. The values of the non-constant coefficients of influence and
the relative inaccuracies of the variables in the experiment

m-th
mea-
sure-
ment

∣∣∣∣
ρ

η
· ∂η

∂ρ

∣∣∣∣
m

∣∣∣∣
ρ1

η
· ∂η

∂ρ1

∣∣∣∣
m

∣∣∣∣
∆r

r

∣∣∣∣
m

∣∣∣∣
∆ν

ν

∣∣∣∣
m

∣∣∣∣
∆ρ

ρ

∣∣∣∣
m

∣∣∣∣
∆ρ1

ρ1

∣∣∣∣
m

1 0.1252 1.1252 0.016 0.0317 6.339× 10−4 3.52× 10−5

2 0.1252 1.1252 0.016 0.0274 6.339× 10−4 3.52× 10−5

3 0.1252 1.1252 0.016 0.0231 6.339× 10−4 3.52× 10−5

4 0.125 1.125 0.025 0.0417 9.523× 10−4 5.29× 10−5

5 0.125 1.125 0.025 0.0467 9.523× 10−4 5.29× 10−5

We compute the statistical mean values

∣∣∣∣
ρ

η
· ∂η

∂ρ

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
ρ

η
· ∂η

∂ρ

∣∣∣∣
m

= 0.1251,

∣∣∣∣
ρ1

η
· ∂η

∂ρ1

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
ρ1

η
· ∂η

∂ρ1

∣∣∣∣
m

= 1.1251.

Then according to (5) the analytical form of ηr is

ηr = 2
∣∣∣∣
∆r

r

∣∣∣∣ +
∣∣∣∣
∆ν

ν

∣∣∣∣ + 0.1251
∣∣∣∣
∆ρ

ρ

∣∣∣∣ + 1.1251
∣∣∣∣
∆ρ1

ρ1

∣∣∣∣ .
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Following Section 3 we compute the statistical mean values∣∣∣∣
∆r

r

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
∆r

r

∣∣∣∣
m

= 0.0196,

∣∣∣∣
∆ν

ν

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
∆ν

ν

∣∣∣∣
m

= 0.0341,

∣∣∣∣
∆ρ

ρ

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
∆ρ

ρ

∣∣∣∣
m

= 7.6126 × 10−4 and
∣∣∣∣
∆ρ1

ρ1

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
∆ρ1

ρ1

∣∣∣∣
m

=

= 4.228 × 10−5. For numerical value of the maximum relative inaccu-

racy we get ηr = 2
∣∣∣∣
∆r

r

∣∣∣∣ +
∣∣∣∣
∆ν

ν

∣∣∣∣+ 0.1251
∣∣∣∣
∆ρ

ρ

∣∣∣∣ +1.1251
∣∣∣∣
∆ρ1

ρ1

∣∣∣∣ = 0.0734.

We can see that there is a certain difference between the classic
method and our method which gives more adequate to the reality re-
sults.

Furthermore, let A1 =
∣∣∣∣
∂η

∂r

∣∣∣∣ = 2, A2 =
∣∣∣∣
∂η

∂ν

∣∣∣∣ = 1,

A3 =
∣∣∣∣
∂η

∂ρ

∣∣∣∣ = 0.1251 and A4 =
∣∣∣∣
∂η

∂ρ1

∣∣∣∣ = 1.1251. According to Sec-

tion 4 the stochastic plane α of the relative inaccuracy of η in the

space
(

∆r

r
,
∆ν

ν
,
∆ρ

ρ
,
∆ρ1

ρ1
,±ηr

)
of the relative inaccuracy has general

equation α : A1

∣∣∣∣
∆r

r

∣∣∣∣ + A2

∣∣∣∣
∆ν

ν

∣∣∣∣ + A3

∣∣∣∣
∆ρ

ρ

∣∣∣∣ + A4

∣∣∣∣
∆ρ1

ρ1

∣∣∣∣− ηr = 0, i. e.

α : 2
∣∣∣∣
∆r

r

∣∣∣∣ +
∣∣∣∣
∆ν

ν

∣∣∣∣ + 0.1251
∣∣∣∣
∆ρ

ρ

∣∣∣∣ + 1.1251
∣∣∣∣
∆ρ1

ρ1

∣∣∣∣− ηr = 0.

According to (6) the value of the coefficient of accuracy of the ex-
periment is

kα = cos∠(−→nα,−→nε) =
1√

A2
1 + A2

2 + A2
3 + A2

4 + 1
= 0.3706.

Conclusion 1. The experiment is not very accurate because the
coefficient of accuracy kα is closer to 0, not 1. It is important to point
out that this does not necessarily mean that the experimental data for
the directly measurable variables are very inaccurate. But when these

conditions are met, small alterations of the values of the variables
∆ρ

ρ
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and
∆ρ1

ρ1
lead to substantial alterations of the values of the function

ηr = ηr

(
∆r

r
,
∆ν

ν
,
∆ρ

ρ
,
∆ρ1

ρ1

)
.

Conclusion 2. The Criterion for accuracy from Section 4 gives
conditions under which the accuracy of the experiment can be in-
creased, namely: to select such values of the directly measureable vari-
ables ρ and ρ1, under which the values of the coefficients of influence
ρ

η
· ∂η

∂ρ
=

ρ

ρ1 − ρ
and

ρ1

η
· ∂η

∂ρ1
=

ρ1

ρ1 − ρ
are smaller, i. e. the accuracy

of the experiment can be increased if the sphere which is put in the
glycerine is with higher density. It is important to point out that if that
condition was met, this does not mean that the experimental data for
ρ and ρ1 were going to be more accurate, but that small alterations of

the values of the variables
∆ρ

ρ
and

∆ρ1

ρ1
would lead to small alterations

of the values of the function ηr = ηr

(
∆r

r
,
∆ν

ν
,
∆ρ

ρ
,
∆ρ1

ρ1

)
.

6 Discussion

The advantages of the presented in this paper method for analytically
representing the maximum relative inaccuracy of an indirectly measur-
able variable and for computing its value can be summarised in the
following basic directions.

(i) More adequate to the objective reality quantity value of the
maximum relative inaccuracy of the indirectly measureable variable.

(ii) Using the Criterion of the accuracy of the experiment, the
method shows conditions under which the accuracy of the experiment
is the greatest possible one.

(iii) Universality, because this method can be applied in different
scientific fields, in experiments held using various utensils and methods,
in mathematical models described even with indifferential functions.

(iv) Clarity and observability of the results when n = 1 or n = 2
using a computer generated graphical representation, accordingly, using
a line or a plane.
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We have to point out that natural processes are described by contin-
uous functions which are either differentiable or indifferentiable in some
points, but there are left and right derivatives in these points. How-
ever, in mathematical models describing these processes this might not
be the case. In these models the method is not applicable.

Each utensil for measurement measures a real and not mathemati-
cally modeled variable. The real variables are always finite and no mat-
ter how fast (or even explosive) their alteration is, it is never (strictly)
jumping but rather smooth in a small enough interval of time. The
representations of jumps in the behavior of a function and of an in-
finite value of a real variable are only theoretical (model). They are
reasonable abstractions when describing the objective reality.

Moreover, the dimensionless scale of the quality of an experiment
gives an opportunity for:

(i) Quality evaluation of the experiment;
(ii) Comparison between the efficiency of different experimental

methods in one research can be compared. Moreover, the method
makes it possible to even compare the efficiency of experimental meth-
ods from different scientific fields.

7 Conclusion

While in the classical method the mean arithmetic values of the in-
directly measurable variable fr are used, in our method we use the
statistical mean values of the random variables that f is composed of.
Thus we get the most probable value for fr.

Moreover, in practice the maximum relative inaccuracy of a mea-
surable variable finds a much wider application than the maximum
absolute relative inaccuracy because it is a dimensionless variable and
can be presented in percentages.

The suggested by us method is of great importance for every ex-
perimental science – physics, chemistry, biology, medicine, sociology,
economics, etc. in which the studied processes are described by dif-
ferentiable functions. Using it, not only more adequate to the reality
numerical value of the maximum relative inaccuracy can be determined
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given a certain experiment, but also using the dimensionless scale a
quantity evaluation of the quality (accuracy) of the experiment can be
given and the conditions, under which this accuracy can be increased,
can be determined. The dimensionless scales used in the experimental
science have certain advantages compared to the unit ones. An im-
portant one is that results from measurements of essentially different
variables can be compared.
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